//[ getting_started_listing_01 #include #include int main(int, char**) { namespace bh = boost::histogram; using namespace bh::literals; // enables _c suffix /* create a static 1d-histogram with an axis that has 10 equidistant bins on the real line from -1.0 to 2.0, and label it as "x" */ auto h = bh::make_static_histogram( bh::axis::regular<>(10, -1.0, 2.0, "x") ); // fill histogram with data, typically this happens in a loop h(-1.5); // put in underflow bin h(-1.0); // included in first bin, bin interval is semi-open h(2.0); // put in overflow bin, bin interval is semi-open h(20.0); // put in overflow bin // STL algorithms are supported auto data = { -0.5, 1.1, 0.3, 1.7 }; std::for_each(data.begin(), data.end(), h); /* do a weighted fill using bh::weight, a wrapper for any type, which may appear at the beginning of the argument list */ h(bh::weight(1.0), 0.1); /* iterate over bins, loop excludes under- and overflow bins - index 0_c is a compile-time number, the only way in C++ to make axis(...) to return a different type for each index - for-loop yields instances of `bin_type`, usually is a semi-open interval representing the bin, whose edges can be accessed with methods `lower()` and `upper()`, but the choice depends on the axis type, please look it up in the reference - `operator()` returns the bin counter at index, you can then access its `value() and `variance()` methods; the first returns the actual count, the second returns a variance estimate of the count; a bin_type is convertible into an index (see Rationale section for what this means) */ for (auto bin : h.axis(0_c)) { std::cout << "bin " << bin.idx() << " x in [" << bin.lower() << ", " << bin.upper() << "): " << h.bin(bin).value() << " +/- " << std::sqrt(h.bin(bin).variance()) << std::endl; } // accessing under- and overflow bins is easy, use indices -1 and 10 std::cout << "underflow bin [" << h.axis(0_c)[-1].lower() << ", " << h.axis(0_c)[-1].upper() << "): " << h.bin(-1).value() << " +/- " << std::sqrt(h.bin(-1).variance()) << std::endl; std::cout << "overflow bin [" << h.axis(0_c)[10].lower() << ", " << h.axis(0_c)[10].upper() << "): " << h.bin(10).value() << " +/- " << std::sqrt(h.bin(10).variance()) << std::endl; /* program output: bin 0 x in [-1, -0.7): 1 +/- 1 bin 1 x in [-0.7, -0.4): 1 +/- 1 bin 2 x in [-0.4, -0.1): 0 +/- 0 bin 3 x in [-0.1, 0.2): 2.5 +/- 2.5 bin 4 x in [0.2, 0.5): 1 +/- 1 bin 5 x in [0.5, 0.8): 0 +/- 0 bin 6 x in [0.8, 1.1): 4 +/- 2 bin 7 x in [1.1, 1.4): 1 +/- 1 bin 8 x in [1.4, 1.7): 0 +/- 0 bin 9 x in [1.7, 2): 1 +/- 1 underflow bin [-inf, -1): 1 +/- 1 overflow bin [2, inf): 2 +/- 1.41421 */ } //]