graph/doc/bc_clustering.html
2004-09-13 15:36:39 +00:00

28 lines
4.6 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>Function betweenness_centrality_clustering</title><div class="titlepage"><div></div><div></div></div><div class="refnamediv"><h2><span class="refentrytitle">Function betweenness_centrality_clustering</span></h2><p>boost::betweenness_centrality_clustering &#8212; Graph clustering based on edge betweenness centrality.</p></div><h2 xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" class="refsynopsisdiv-title">Synopsis</h2><div xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" class="refsynopsisdiv"><pre class="synopsis">
<span class="bold"><b>template</b></span>&lt;<span class="bold"><b>typename</b></span> MutableGraph, <span class="bold"><b>typename</b></span> Done, <span class="bold"><b>typename</b></span> EdgeCentralityMap,
         <span class="bold"><b>typename</b></span> VertexIndexMap&gt;
  <span class="type"><span class="bold"><b>void</b></span></span> betweenness_centrality_clustering(MutableGraph &amp; g, Done done,
                                         EdgeCentralityMap edge_centrality,
                                         VertexIndexMap vertex_index);
<span class="bold"><b>template</b></span>&lt;<span class="bold"><b>typename</b></span> MutableGraph, <span class="bold"><b>typename</b></span> Done, <span class="bold"><b>typename</b></span> EdgeCentralityMap&gt;
  <span class="type"><span class="bold"><b>void</b></span></span> betweenness_centrality_clustering(MutableGraph &amp; g, Done done,
                                         EdgeCentralityMap edge_centrality);
<span class="bold"><b>template</b></span>&lt;<span class="bold"><b>typename</b></span> MutableGraph, <span class="bold"><b>typename</b></span> Done&gt;
  <span class="type"><span class="bold"><b>void</b></span></span> betweenness_centrality_clustering(MutableGraph &amp; g, Done done);</pre></div><div class="refsect1" lang="en"><a name="id822306"></a><h2>Description</h2><div class="variablelist"><p class="title"><b>Parameters</b></p><dl><dt><span class="term">done</span></dt><dd><p>The function object that indicates termination of the algorithm. It must be a ternary function object thats accepts the maximum centrality, the descriptor of the edge that will be removed, and the graph <tt class="computeroutput">g</tt> .</p></dd><dt><span class="term">edge_centrality</span></dt><dd><p>(UTIL/OUT) The property map that will store the betweenness centrality for each edge. When the algorithm terminates, it will contain the edge centralities for the graph. The type of this property map must model the ReadWritePropertyMap concept. Defaults to an <tt class="computeroutput">iterator_property_map</tt> whose value type is <tt class="computeroutput">Done::centrality_type</tt> and using <tt class="computeroutput">get(edge_index, g)</tt> for the index map.</p></dd><dt><span class="term">g</span></dt><dd><p>The graph on which clustering will be performed. The type of this parameter (<tt class="computeroutput">MutableGraph</tt> ) must be a model of the VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph concepts.</p></dd><dt><span class="term">vertex_index</span></dt><dd><p>(IN) The property map that maps vertices to indices in the range <tt class="computeroutput"></tt> [0, num_vertices(g)). This type of this property map must model the ReadablePropertyMap concept and its value type must be an integral type. Defaults to <tt class="computeroutput">get(vertex_index, g)</tt> . </p></dd></dl></div><p>This algorithm implements graph clustering based on edge betweenness centrality. It is an iterative algorithm, where in each step it compute the edge betweenness centrality (via <a href="betweenness_centrality.html"/>brandes_betweenness_centrality</a>) and removes the edge with the maximum betweenness centrality. The <tt class="computeroutput">done</tt> function object determines when the algorithm terminates (the edge found when the algorithm terminates will not be removed).</p><p></p></div></div><table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr><td align="left"></td><td align="right"><small></small></td></tr></table>
<h3>Where Defined</h3>
&lt;<a
href="../../../boost/graph/bc_clustering.hpp">boost/graph/bc_clustering.hpp</a>&gt;
<hr>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2004</TD><TD>
<A HREF="../../../people/doug_gregor.html">Douglas Gregor</A>, Indiana University (dgregor@cs.indiana.edu</A>)<br>
<A HREF=http://www.osl.iu.edu/~lums>Andrew Lumsdaine</A>,
Indiana University (<A
HREF="mailto:lums@osl.iu.edu">lums@osl.iu.edu</A>)
</TD></TR></TABLE>
</body></html>