graph/example/bfs_basics.cpp
2000-12-09 19:22:30 +00:00

141 lines
4.8 KiB
C++

//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// This file is part of the Boost Graph Library
//
// You should have received a copy of the License Agreement for the
// Boost Graph Library along with the software; see the file LICENSE.
// If not, contact Office of Research, University of Notre Dame, Notre
// Dame, IN 46556.
//
// Permission to modify the code and to distribute modified code is
// granted, provided the text of this NOTICE is retained, a notice that
// the code was modified is included with the above COPYRIGHT NOTICE and
// with the COPYRIGHT NOTICE in the LICENSE file, and that the LICENSE
// file is distributed with the modified code.
//
// LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.
// By way of example, but not limitation, Licensor MAKES NO
// REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
// PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS
// OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS
// OR OTHER RIGHTS.
//=======================================================================
#include <boost/config.hpp>
#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/graph_utility.hpp> // for iota
#include <boost/pending/indirect_cmp.hpp>
/*
This example records the "discover time" and "finish time"
of each vertex during a breadth-first search. This
gives a little insight into the order in which BFS
traverses a graph. It is instructive to compare
this to the discover and finish time using depth
first search (in dfs_basics.cc).
Here's the example graph from p. 471 of the CLR:
r--s t--u
| | /| |
| |/ | |
v w--x--y
Sample Output:
order of discovery: s r w v t x u y
order of finish: s r w v t x u y
*/
using namespace std;
using namespace boost;
int main(int, char*[])
{
// Select the graph type we wish to use
typedef adjacency_list<vecS, vecS, undirectedS> Graph;
// Set up the vertex names
enum { r, s, t, u, v, w, x, y, N };
char name[] = { 'r', 's', 't', 'u', 'v', 'w', 'x', 'y' };
int i;
typedef pair<int,int> E;
// Specify the edges in the graph
E edge_array[] = { E(r,s), E(r,v), E(s,w),
E(w,r), E(w,t), E(w,x),
E(x,t), E(t,u), E(x,y),
E(u,y) };
const int nedges = sizeof(edge_array) / sizeof(E);
// Create the graph object
Graph G(N, edge_array, edge_array + nedges);
// Some typedef's to save a little typing
typedef graph_traits<Graph>::vertex_descriptor Vertex;
typedef graph_traits<Graph>::vertices_size_type size_type;
typedef std::vector<Vertex>::iterator Piter;
typedef std::vector<size_type>::iterator Iiter;
// color property needed in breadth-first search
std::vector<default_color_type> color(num_vertices(G));
typedef boost::property_map<Graph, vertex_index_t>::type IndexMap;
IndexMap vertex_id = get(vertex_index, G);
// discover time property
std::vector<size_type> dtime(num_vertices(G));
// finish time property
std::vector<size_type> ftime(num_vertices(G));
typedef std::vector<size_type>::iterator RAIter;
typedef random_access_iterator_property_map<RAIter, size_type,
size_type&, IndexMap> IterMap;
IterMap discover(dtime.begin(), vertex_id);
IterMap finish(ftime.begin(), vertex_id);
// Call the 4 argument version of BFS.
// There is also a 3 argument version (assume color is in the graph)
// and a 5 argument version (adds an argument for the queue).
int time = 0;
boost::breadth_first_search
(G, vertex(s, G), make_bfs_visitor(
std::make_pair(stamp_times(discover, time, on_discover_vertex()),
stamp_times(finish, time, on_finish_vertex()))),
make_iterator_property_map(color.begin(), vertex_id, color[0]));
cout << "order of discovery: ";
// Perform some STL magic to order the vertices
// according to their discover time
std::vector<size_type> discover_order(N);
iota(discover_order.begin(), discover_order.end(), 0);
std::sort(discover_order.begin(), discover_order.end(),
indirect_cmp<IterMap, std::less<size_type> >(discover));
for (i = 0; i < N; ++i)
cout << name[ discover_order[i] ] << " ";
cout << endl;
cout << "order of finish: ";
vector<size_type> finish_order(N);
iota(finish_order.begin(), finish_order.end(), 0);
std::sort(finish_order.begin(), finish_order.end(),
indirect_cmp<IterMap, std::less<size_type> >(finish));
for (i = 0; i < N; ++i)
cout << name[ finish_order[i] ] << " ";
cout << endl;
return 0;
}