graph/test/mcgregor_subgraphs_test.cpp
2009-06-23 14:18:24 +00:00

337 lines
11 KiB
C++

#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>
#include <boost/lexical_cast.hpp>
#include <boost/random.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/graphviz.hpp>
#include <boost/graph/isomorphism.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/random.hpp>
#include <boost/graph/mcgregor_common_subgraphs.hpp>
#include <boost/property_map/shared_array_property_map.hpp>
using namespace boost;
bool was_common_subgraph_found = false, output_graphs = false;
// Callback that compares incoming graphs to the supplied common
// subgraph.
template <typename Graph>
struct test_callback {
test_callback(Graph& common_subgraph,
const Graph& graph1,
const Graph& graph2) :
m_graph1(graph1),
m_graph2(graph2),
m_common_subgraph(common_subgraph) { }
template <typename CorrespondenceMapFirstToSecond,
typename CorrespondenceMapSecondToFirst>
bool operator()(CorrespondenceMapFirstToSecond correspondence_map_1_to_2,
CorrespondenceMapSecondToFirst correspondence_map_2_to_1,
typename graph_traits<Graph>::vertices_size_type subgraph_size) {
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
typedef std::pair<Edge, bool> EdgeInfo;
typedef typename property_map<Graph, vertex_index_t>::type VertexIndexMap;
typedef typename property_map<Graph, vertex_name_t>::type VertexNameMap;
typedef typename property_map<Graph, edge_name_t>::type EdgeNameMap;
if (subgraph_size != num_vertices(m_common_subgraph)) {
return (true);
}
// Fill membership maps for both graphs
typedef shared_array_property_map<bool, VertexIndexMap> MembershipMap;
MembershipMap membership_map1(num_vertices(m_graph1),
get(vertex_index, m_graph1));
MembershipMap membership_map2(num_vertices(m_graph2),
get(vertex_index, m_graph2));
fill_membership_maps(m_graph1, m_graph2,
correspondence_map_1_to_2, correspondence_map_2_to_1,
membership_map1, membership_map2);
// Generate filtered graphs using membership maps
typedef typename membership_filtered_graph_traits<Graph, MembershipMap>::graph_type
MembershipFilteredGraph;
MembershipFilteredGraph subgraph1 =
make_membership_filtered_graph(m_graph1, membership_map1);
MembershipFilteredGraph subgraph2 =
make_membership_filtered_graph(m_graph2, membership_map2);
VertexIndexMap vindex_map1 = get(vertex_index, subgraph1);
VertexIndexMap vindex_map2 = get(vertex_index, subgraph2);
VertexNameMap vname_map_common = get(vertex_name, m_common_subgraph);
VertexNameMap vname_map1 = get(vertex_name, subgraph1);
VertexNameMap vname_map2 = get(vertex_name, subgraph2);
EdgeNameMap ename_map_common = get(edge_name, m_common_subgraph);
EdgeNameMap ename_map1 = get(edge_name, subgraph1);
EdgeNameMap ename_map2 = get(edge_name, subgraph2);
// Verify that subgraph1 matches the supplied common subgraph
BGL_FORALL_VERTICES_T(vertex1, subgraph1, MembershipFilteredGraph) {
Vertex vertex_common = vertex(get(vindex_map1, vertex1), m_common_subgraph);
// Match vertex names
if (get(vname_map_common, vertex_common) != get(vname_map1, vertex1)) {
// Keep looking
return (true);
}
BGL_FORALL_VERTICES_T(vertex1_2, subgraph1, MembershipFilteredGraph) {
Vertex vertex_common2 = vertex(get(vindex_map1, vertex1_2), m_common_subgraph);
EdgeInfo edge_common = edge(vertex_common, vertex_common2, m_common_subgraph);
EdgeInfo edge1 = edge(vertex1, vertex1_2, subgraph1);
if ((edge_common.second != edge1.second) ||
((edge_common.second && edge1.second) &&
(get(ename_map_common, edge_common.first) != get(ename_map1, edge1.first)))) {
// Keep looking
return (true);
}
}
} // BGL_FORALL_VERTICES_T (subgraph1)
// Verify that subgraph2 matches the supplied common subgraph
BGL_FORALL_VERTICES_T(vertex2, subgraph2, MembershipFilteredGraph) {
Vertex vertex_common = vertex(get(vindex_map2, vertex2), m_common_subgraph);
// Match vertex names
if (get(vname_map_common, vertex_common) != get(vname_map2, vertex2)) {
// Keep looking
return (true);
}
BGL_FORALL_VERTICES_T(vertex2_2, subgraph2, MembershipFilteredGraph) {
Vertex vertex_common2 = vertex(get(vindex_map2, vertex2_2), m_common_subgraph);
EdgeInfo edge_common = edge(vertex_common, vertex_common2, m_common_subgraph);
EdgeInfo edge2 = edge(vertex2, vertex2_2, subgraph2);
if ((edge_common.second != edge2.second) ||
((edge_common.second && edge2.second) &&
(get(ename_map_common, edge_common.first) != get(ename_map2, edge2.first)))) {
// Keep looking
return (true);
}
}
} // BGL_FORALL_VERTICES_T (subgraph2)
// Check isomorphism just to be thorough
if (verify_isomorphism(subgraph1, subgraph2, correspondence_map_1_to_2)) {
was_common_subgraph_found = true;
if (output_graphs) {
std::fstream file_subgraph("found_common_subgraph.dot", std::fstream::out);
write_graphviz(file_subgraph, subgraph1,
make_label_writer(get(vertex_name, m_graph1)),
make_label_writer(get(edge_name, m_graph1)));
}
// Stop iterating
return (false);
}
// Keep looking
return (true);
}
private:
const Graph& m_graph1, m_graph2;
Graph& m_common_subgraph;
};
template <typename Graph,
typename RandomNumberGenerator,
typename VertexNameMap,
typename EdgeNameMap>
void add_random_vertices(Graph& graph, RandomNumberGenerator& generator,
int vertices_to_create, int max_edges_per_vertex,
VertexNameMap vname_map, EdgeNameMap ename_map) {
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef std::vector<Vertex> VertexList;
VertexList new_vertices;
for (int v_index = 0; v_index < vertices_to_create; ++v_index) {
Vertex new_vertex = add_vertex(graph);
put(vname_map, new_vertex, generator());
new_vertices.push_back(new_vertex);
}
// Add edges for every new vertex. Care is taken to avoid parallel
// edges.
for (typename VertexList::const_iterator v_iter = new_vertices.begin();
v_iter != new_vertices.end(); ++v_iter) {
Vertex source_vertex = *v_iter;
int edges_for_vertex = (std::min)((generator() % max_edges_per_vertex) + 1,
(int)num_vertices(graph));
while (edges_for_vertex > 0) {
Vertex target_vertex = random_vertex(graph, generator);
if (source_vertex == target_vertex) {
continue;
}
BGL_FORALL_OUTEDGES_T(source_vertex, edge, graph, Graph) {
if (target(edge, graph) == target_vertex) {
continue;
}
}
put(ename_map, add_edge(source_vertex, target_vertex, graph).first,
generator());
edges_for_vertex--;
}
}
}
int test_main (int argc, char *argv[]) {
int vertices_to_create = 10;
int max_edges_per_vertex = 2;
std::size_t random_seed = time(0);
if (argc > 1) {
vertices_to_create = lexical_cast<int>(argv[1]);
}
if (argc > 2) {
max_edges_per_vertex = lexical_cast<int>(argv[2]);
}
if (argc > 3) {
output_graphs = lexical_cast<bool>(argv[3]);
}
if (argc > 4) {
random_seed = lexical_cast<std::size_t>(argv[4]);
}
minstd_rand generator(random_seed);
// Using a vecS graph here so that we don't have to mess around with
// a vertex index map; it will be implicit.
typedef adjacency_list<listS, vecS, directedS,
property<vertex_name_t, unsigned int,
property<vertex_index_t, unsigned int> >,
property<edge_name_t, unsigned int> > Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
typedef graph_traits<Graph>::edge_descriptor Edge;
typedef property_map<Graph, vertex_name_t>::type VertexNameMap;
typedef property_map<Graph, edge_name_t>::type EdgeNameMap;
// Generate a random common subgraph and then add random vertices
// and edges to the two parent graphs.
Graph common_subgraph, graph1, graph2;
VertexNameMap vname_map_common = get(vertex_name, common_subgraph);
VertexNameMap vname_map1 = get(vertex_name, graph1);
VertexNameMap vname_map2 = get(vertex_name, graph2);
EdgeNameMap ename_map_common = get(edge_name, common_subgraph);
EdgeNameMap ename_map1 = get(edge_name, graph1);
EdgeNameMap ename_map2 = get(edge_name, graph2);
for (int vindex = 0; vindex < vertices_to_create; ++vindex) {
put(vname_map_common, add_vertex(common_subgraph), generator());
}
BGL_FORALL_VERTICES(source_vertex, common_subgraph, Graph) {
BGL_FORALL_VERTICES(target_vertex, common_subgraph, Graph) {
if (source_vertex != target_vertex) {
put(ename_map_common,
add_edge(source_vertex, target_vertex, common_subgraph).first,
generator());
}
}
}
randomize_property<vertex_name_t>(common_subgraph, generator);
randomize_property<edge_name_t>(common_subgraph, generator);
copy_graph(common_subgraph, graph1);
copy_graph(common_subgraph, graph2);
// Randomly add vertices and edges to graph1 and graph2.
add_random_vertices(graph1, generator, vertices_to_create,
max_edges_per_vertex, vname_map1, ename_map1);
add_random_vertices(graph2, generator, vertices_to_create,
max_edges_per_vertex, vname_map2, ename_map2);
if (output_graphs) {
std::fstream file_graph1("graph1.dot", std::fstream::out),
file_graph2("graph2.dot", std::fstream::out),
file_common_subgraph("expected_common_subgraph.dot", std::fstream::out);
write_graphviz(file_graph1, graph1,
make_label_writer(vname_map1),
make_label_writer(ename_map1));
write_graphviz(file_graph2, graph2,
make_label_writer(vname_map2),
make_label_writer(ename_map2));
write_graphviz(file_common_subgraph, common_subgraph,
make_label_writer(get(vertex_name, common_subgraph)),
make_label_writer(get(edge_name, common_subgraph)));
}
std::cout << "Searching for common subgraph of size " <<
num_vertices(common_subgraph) << std::endl;
test_callback<Graph> user_callback(common_subgraph, graph1, graph2);
mcgregor_common_subgraphs(graph1, graph2, user_callback,
edges_equivalent(make_property_map_equivalent(ename_map1, ename_map2)).
vertices_equivalent(make_property_map_equivalent(vname_map1, vname_map2)));
BOOST_CHECK(was_common_subgraph_found);
return 0;
}