graph/test/dominator_tree_test.cpp
Pavel Samolysov 38b4f317a8 Add a test case for adjacency_list< listS, vecS, bidirectionalS >
This specialization of the adjacency_list class uses different value
for `graph_traits< G >::null_vertex()`.
2025-03-01 14:21:49 +03:00

334 lines
13 KiB
C++

//=======================================================================
// Copyright (C) 2005 Jong Soo Park <jongsoo.park -at- gmail.com>
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <boost/core/lightweight_test.hpp>
#include <iostream>
#include <algorithm>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dominator_tree.hpp>
using namespace std;
struct DominatorCorrectnessTestSet
{
typedef pair< int, int > edge;
int numOfVertices;
vector< edge > edges;
vector< int > correctIdoms;
};
using namespace boost;
// a workaround for the C++ standard before C++17, after switching to C++17,
// the method may be just inlined into the run_test() with constexpr if.
namespace detail {
template < bool IsRandomAccessAdjacentList = true>
struct GraphIndexer {
template <typename Graph>
static void index_graph(Graph &g) {
// nothing to do for already indexed adjacent list
}
};
template <>
struct GraphIndexer<false> {
template <typename Graph>
static void index_graph(Graph &g) {
using IndexMap = typename property_map< Graph, vertex_index_t >::type;
IndexMap indexMap(get(vertex_index, g));
typename graph_traits< Graph >::vertex_iterator uItr, uEnd;
int j = 0;
for (boost::tie(uItr, uEnd) = vertices(g); uItr != uEnd; ++uItr, ++j)
{
put(indexMap, *uItr, j);
}
}
};
} // namespace detail
template < typename Graph >
void index_graph(Graph &g) {
using Traits = adjacency_list_traits< typename Graph::out_edge_list_selector,
typename Graph::vertex_list_selector,
typename Graph::directed_selector,
typename Graph::edge_list_selector >;
::detail::GraphIndexer< Traits::is_rand_access::value >::index_graph(g);
}
template < typename Graph >
void run_test()
{
using edge = DominatorCorrectnessTestSet::edge;
DominatorCorrectnessTestSet testSet[7];
// Tarjan's paper
testSet[0].numOfVertices = 13;
testSet[0].edges.push_back(edge(0, 1));
testSet[0].edges.push_back(edge(0, 2));
testSet[0].edges.push_back(edge(0, 3));
testSet[0].edges.push_back(edge(1, 4));
testSet[0].edges.push_back(edge(2, 1));
testSet[0].edges.push_back(edge(2, 4));
testSet[0].edges.push_back(edge(2, 5));
testSet[0].edges.push_back(edge(3, 6));
testSet[0].edges.push_back(edge(3, 7));
testSet[0].edges.push_back(edge(4, 12));
testSet[0].edges.push_back(edge(5, 8));
testSet[0].edges.push_back(edge(6, 9));
testSet[0].edges.push_back(edge(7, 9));
testSet[0].edges.push_back(edge(7, 10));
testSet[0].edges.push_back(edge(8, 5));
testSet[0].edges.push_back(edge(8, 11));
testSet[0].edges.push_back(edge(9, 11));
testSet[0].edges.push_back(edge(10, 9));
testSet[0].edges.push_back(edge(11, 0));
testSet[0].edges.push_back(edge(11, 9));
testSet[0].edges.push_back(edge(12, 8));
testSet[0].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(3);
testSet[0].correctIdoms.push_back(3);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(7);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(4);
// Appel. p441. figure 19.4
testSet[1].numOfVertices = 7;
testSet[1].edges.push_back(edge(0, 1));
testSet[1].edges.push_back(edge(1, 2));
testSet[1].edges.push_back(edge(1, 3));
testSet[1].edges.push_back(edge(2, 4));
testSet[1].edges.push_back(edge(2, 5));
testSet[1].edges.push_back(edge(4, 6));
testSet[1].edges.push_back(edge(5, 6));
testSet[1].edges.push_back(edge(6, 1));
testSet[1].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[1].correctIdoms.push_back(0);
testSet[1].correctIdoms.push_back(1);
testSet[1].correctIdoms.push_back(1);
testSet[1].correctIdoms.push_back(2);
testSet[1].correctIdoms.push_back(2);
testSet[1].correctIdoms.push_back(2);
// Appel. p449. figure 19.8
testSet[2].numOfVertices = 13, testSet[2].edges.push_back(edge(0, 1));
testSet[2].edges.push_back(edge(0, 2));
testSet[2].edges.push_back(edge(1, 3));
testSet[2].edges.push_back(edge(1, 6));
testSet[2].edges.push_back(edge(2, 4));
testSet[2].edges.push_back(edge(2, 7));
testSet[2].edges.push_back(edge(3, 5));
testSet[2].edges.push_back(edge(3, 6));
testSet[2].edges.push_back(edge(4, 7));
testSet[2].edges.push_back(edge(4, 2));
testSet[2].edges.push_back(edge(5, 8));
testSet[2].edges.push_back(edge(5, 10));
testSet[2].edges.push_back(edge(6, 9));
testSet[2].edges.push_back(edge(7, 12));
testSet[2].edges.push_back(edge(8, 11));
testSet[2].edges.push_back(edge(9, 8));
testSet[2].edges.push_back(edge(10, 11));
testSet[2].edges.push_back(edge(11, 1));
testSet[2].edges.push_back(edge(11, 12));
testSet[2].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[2].correctIdoms.push_back(0);
testSet[2].correctIdoms.push_back(0);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(2);
testSet[2].correctIdoms.push_back(3);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(2);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(6);
testSet[2].correctIdoms.push_back(5);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(0);
testSet[3].numOfVertices = 8, testSet[3].edges.push_back(edge(0, 1));
testSet[3].edges.push_back(edge(1, 2));
testSet[3].edges.push_back(edge(1, 3));
testSet[3].edges.push_back(edge(2, 7));
testSet[3].edges.push_back(edge(3, 4));
testSet[3].edges.push_back(edge(4, 5));
testSet[3].edges.push_back(edge(4, 6));
testSet[3].edges.push_back(edge(5, 7));
testSet[3].edges.push_back(edge(6, 4));
testSet[3].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[3].correctIdoms.push_back(0);
testSet[3].correctIdoms.push_back(1);
testSet[3].correctIdoms.push_back(1);
testSet[3].correctIdoms.push_back(3);
testSet[3].correctIdoms.push_back(4);
testSet[3].correctIdoms.push_back(4);
testSet[3].correctIdoms.push_back(1);
// Muchnick. p256. figure 8.21
testSet[4].numOfVertices = 8, testSet[4].edges.push_back(edge(0, 1));
testSet[4].edges.push_back(edge(1, 2));
testSet[4].edges.push_back(edge(2, 3));
testSet[4].edges.push_back(edge(2, 4));
testSet[4].edges.push_back(edge(3, 2));
testSet[4].edges.push_back(edge(4, 5));
testSet[4].edges.push_back(edge(4, 6));
testSet[4].edges.push_back(edge(5, 7));
testSet[4].edges.push_back(edge(6, 7));
testSet[4].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[4].correctIdoms.push_back(0);
testSet[4].correctIdoms.push_back(1);
testSet[4].correctIdoms.push_back(2);
testSet[4].correctIdoms.push_back(2);
testSet[4].correctIdoms.push_back(4);
testSet[4].correctIdoms.push_back(4);
testSet[4].correctIdoms.push_back(4);
// Muchnick. p253. figure 8.18
testSet[5].numOfVertices = 8, testSet[5].edges.push_back(edge(0, 1));
testSet[5].edges.push_back(edge(0, 2));
testSet[5].edges.push_back(edge(1, 6));
testSet[5].edges.push_back(edge(2, 3));
testSet[5].edges.push_back(edge(2, 4));
testSet[5].edges.push_back(edge(3, 7));
testSet[5].edges.push_back(edge(5, 7));
testSet[5].edges.push_back(edge(6, 7));
testSet[5].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[5].correctIdoms.push_back(0);
testSet[5].correctIdoms.push_back(0);
testSet[5].correctIdoms.push_back(2);
testSet[5].correctIdoms.push_back(2);
testSet[5].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[5].correctIdoms.push_back(1);
testSet[5].correctIdoms.push_back(0);
// Cytron's paper, fig. 9
testSet[6].numOfVertices = 14, testSet[6].edges.push_back(edge(0, 1));
testSet[6].edges.push_back(edge(0, 13));
testSet[6].edges.push_back(edge(1, 2));
testSet[6].edges.push_back(edge(2, 3));
testSet[6].edges.push_back(edge(2, 7));
testSet[6].edges.push_back(edge(3, 4));
testSet[6].edges.push_back(edge(3, 5));
testSet[6].edges.push_back(edge(4, 6));
testSet[6].edges.push_back(edge(5, 6));
testSet[6].edges.push_back(edge(6, 8));
testSet[6].edges.push_back(edge(7, 8));
testSet[6].edges.push_back(edge(8, 9));
testSet[6].edges.push_back(edge(9, 10));
testSet[6].edges.push_back(edge(9, 11));
testSet[6].edges.push_back(edge(10, 11));
testSet[6].edges.push_back(edge(11, 9));
testSet[6].edges.push_back(edge(11, 12));
testSet[6].edges.push_back(edge(12, 2));
testSet[6].edges.push_back(edge(12, 13));
testSet[6].correctIdoms.push_back((numeric_limits< int >::max)());
testSet[6].correctIdoms.push_back(0);
testSet[6].correctIdoms.push_back(1);
testSet[6].correctIdoms.push_back(2);
testSet[6].correctIdoms.push_back(3);
testSet[6].correctIdoms.push_back(3);
testSet[6].correctIdoms.push_back(3);
testSet[6].correctIdoms.push_back(2);
testSet[6].correctIdoms.push_back(2);
testSet[6].correctIdoms.push_back(8);
testSet[6].correctIdoms.push_back(9);
testSet[6].correctIdoms.push_back(9);
testSet[6].correctIdoms.push_back(11);
testSet[6].correctIdoms.push_back(0);
for (size_t i = 0; i < sizeof(testSet) / sizeof(testSet[0]); ++i)
{
const int numOfVertices = testSet[i].numOfVertices;
Graph g(testSet[i].edges.begin(), testSet[i].edges.end(), numOfVertices);
using Vertex = typename graph_traits< Graph >::vertex_descriptor;
using IndexMap = typename property_map< Graph, vertex_index_t >::type;
IndexMap indexMap(get(vertex_index, g));
using PredMap
= iterator_property_map< typename vector< Vertex >::iterator, IndexMap >;
index_graph(g);
vector< Vertex > domTreePredVector, domTreePredVector2;
// Lengauer-Tarjan dominator tree algorithm
domTreePredVector = vector< Vertex >(
num_vertices(g), graph_traits< Graph >::null_vertex());
PredMap domTreePredMap
= make_iterator_property_map(domTreePredVector.begin(), indexMap);
lengauer_tarjan_dominator_tree(g, vertex(0, g), domTreePredMap);
vector< int > idom(num_vertices(g));
typename graph_traits< Graph >::vertex_iterator uItr, uEnd;
for (boost::tie(uItr, uEnd) = vertices(g); uItr != uEnd; ++uItr)
{
if (get(domTreePredMap, *uItr)
!= graph_traits< Graph >::null_vertex())
idom[get(indexMap, *uItr)]
= get(indexMap, get(domTreePredMap, *uItr));
else
idom[get(indexMap, *uItr)] = (numeric_limits< int >::max)();
}
copy(idom.begin(), idom.end(), ostream_iterator< int >(cout, " "));
cout << endl;
// dominator tree correctness test
BOOST_TEST(std::equal(
idom.begin(), idom.end(), testSet[i].correctIdoms.begin()));
// compare results of fast version and slow version of dominator tree
domTreePredVector2 = vector< Vertex >(
num_vertices(g), graph_traits< Graph >::null_vertex());
domTreePredMap
= make_iterator_property_map(domTreePredVector2.begin(), indexMap);
iterative_bit_vector_dominator_tree(g, vertex(0, g), domTreePredMap);
vector< int > idom2(num_vertices(g));
for (boost::tie(uItr, uEnd) = vertices(g); uItr != uEnd; ++uItr)
{
if (get(domTreePredMap, *uItr)
!= graph_traits< Graph >::null_vertex())
idom2[get(indexMap, *uItr)]
= get(indexMap, get(domTreePredMap, *uItr));
else
idom2[get(indexMap, *uItr)] = (numeric_limits< int >::max)();
}
copy(idom2.begin(), idom2.end(), ostream_iterator< int >(cout, " "));
cout << endl;
size_t k;
for (k = 0; k < num_vertices(g); ++k)
BOOST_TEST(domTreePredVector[k] == domTreePredVector2[k]);
}
}
int main(int, char*[])
{
using AdjacencyListList = adjacency_list< listS, listS, bidirectionalS,
property< vertex_index_t, std::size_t >, no_property >;
using AdjacencyListVec = adjacency_list< listS, vecS, bidirectionalS >;
run_test< AdjacencyListList >();
run_test< AdjacencyListVec >();
return boost::report_errors();
}