mirror of
https://github.com/boostorg/graph.git
synced 2025-05-09 23:14:00 +00:00
444 lines
17 KiB
HTML
444 lines
17 KiB
HTML
<HTML>
|
|
<!--
|
|
-- Copyright (c) Jeremy Siek 2000
|
|
--
|
|
-- Distributed under the Boost Software License, Version 1.0.
|
|
-- (See accompanying file LICENSE_1_0.txt or copy at
|
|
-- http://www.boost.org/LICENSE_1_0.txt)
|
|
-->
|
|
<Head>
|
|
<Title>Boost Graph Library: Dijkstra's Shortest Paths</Title>
|
|
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
|
|
ALINK="#ff0000">
|
|
<IMG SRC="../../../boost.png"
|
|
ALT="C++ Boost" width="277" height="86">
|
|
|
|
<BR Clear>
|
|
|
|
<H1><A NAME="sec:dijkstra"></A><img src="figs/python.gif" alt="(Python)"/>
|
|
<TT>dijkstra_shortest_paths</TT>
|
|
</H1>
|
|
|
|
|
|
<P>
|
|
<PRE>
|
|
<i>// named parameter version</i>
|
|
template <typename Graph, typename P, typename T, typename R>
|
|
void
|
|
dijkstra_shortest_paths(Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor s,
|
|
const bgl_named_params<P, T, R>& params);
|
|
|
|
<i>// non-named parameter version</i>
|
|
template <typename Graph, typename <a href="DijkstraVisitor.html">DijkstraVisitor</a>,
|
|
typename PredecessorMap, typename DistanceMap,
|
|
typename WeightMap, typename VertexIndexMap, typename <a href="http://www.sgi.com/tech/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.sgi.com/tech/stl/BinaryFunction.html">CombineFunction</a>,
|
|
typename DistInf, typename DistZero, typename ColorMap = <i>default</i>>
|
|
void dijkstra_shortest_paths
|
|
(const Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor s,
|
|
PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
|
|
VertexIndexMap index_map,
|
|
CompareFunction compare, CombineFunction combine, DistInf inf, DistZero zero,
|
|
DijkstraVisitor vis, ColorMap color = <i>default</i>)
|
|
</PRE>
|
|
|
|
<P>
|
|
This algorithm [<A HREF="bibliography.html#dijkstra59">10</A>,<A
|
|
HREF="bibliography.html#clr90">8</A>] solves the single-source
|
|
shortest-paths problem on a weighted, directed or undirected graph for
|
|
the case where all edge weights are nonnegative. Use the Bellman-Ford
|
|
algorithm for the case when some edge weights are negative. Use
|
|
breadth-first search instead of Dijkstra's algorithm when all edge
|
|
weights are equal to one. For the definition of the shortest-path
|
|
problem see Section <A
|
|
HREF="graph_theory_review.html#sec:shortest-paths-algorithms">Shortest-Paths
|
|
Algorithms</A> for some background to the shortest-path problem.
|
|
</P>
|
|
|
|
<P>
|
|
There are two main options for obtaining output from the
|
|
<tt>dijkstra_shortest_paths()</tt> function. If you provide a
|
|
distance property map through the <tt>distance_map()</tt> parameter
|
|
then the shortest distance from the source vertex to every other
|
|
vertex in the graph will be recorded in the distance map. Also you can
|
|
record the shortest paths tree in a predecessor map: for each vertex
|
|
<i>u in V</i>, <i>p[u]</i> will be the predecessor of <i>u</i> in
|
|
the shortest paths tree (unless <i>p[u] = u</i>, in which case <i>u</i> is
|
|
either the source or a vertex unreachable from the source). In
|
|
addition to these two options, the user can provide there own
|
|
custom-made visitor that can takes actions during any of the
|
|
algorithm's event points.</P>
|
|
|
|
<P>
|
|
Dijkstra's algorithm finds all the shortest paths from the source
|
|
vertex to every other vertex by iteratively ``growing'' the set of
|
|
vertices <i>S</i> to which it knows the shortest path. At each step of
|
|
the algorithm, the next vertex added to <i>S</i> is determined by a
|
|
priority queue. The queue contains the vertices in <i>V - S</i><a
|
|
href="#1">[1]</a> prioritized by their distance label, which is the
|
|
length of the shortest path seen so far for each vertex. The vertex
|
|
<i>u</i> at the top of the priority queue is then added to <i>S</i>,
|
|
and each of its out-edges is relaxed: if the distance to <i>u</i> plus
|
|
the weight of the out-edge <i>(u,v)</i> is less than the distance
|
|
label for <i>v</i> then the estimated distance for vertex <i>v</i> is
|
|
reduced. The algorithm then loops back, processing the next vertex at
|
|
the top of the priority queue. The algorithm finishes when the
|
|
priority queue is empty.
|
|
</P>
|
|
<P>
|
|
The algorithm uses color markers (white, gray, and black) to keep
|
|
track of which set each vertex is in. Vertices colored black are in
|
|
<i>S</i>. Vertices colored white or gray are in <i>V-S</i>. White vertices have
|
|
not yet been discovered and gray vertices are in the priority queue.
|
|
By default, the algorithm will allocate an array to store a color
|
|
marker for each vertex in the graph. You can provide you own storage
|
|
and access for colors with the <tt>color_map()</tt> parameter.
|
|
</P>
|
|
<p>
|
|
The following is the pseudo-code for Dijkstra's single-source shortest
|
|
paths algorithm. <i>w</i> is the edge weight, <i>d</i> is the distance label,
|
|
and <i>p</i> is the predecessor of each vertex which is used to encode
|
|
the shortest paths tree. <i>Q</i> is a priority queue that supports the
|
|
DECREASE-KEY operation. The visitor event points for the algorithm are
|
|
indicated by the labels on the right.
|
|
</p>
|
|
|
|
<table>
|
|
<tr>
|
|
<td valign="top">
|
|
<pre>
|
|
DIJKSTRA(<i>G</i>, <i>s</i>, <i>w</i>)
|
|
<b>for</b> each vertex <i>u in V</i>
|
|
<i>d[u] := infinity</i>
|
|
<i>p[u] := u</i>
|
|
<i>color[u] :=</i> WHITE
|
|
<b>end for</b>
|
|
<i>color[s] := </i>GRAY
|
|
<i>d[s] := 0</i>
|
|
INSERT(<i>Q</i>, <i>s</i>)
|
|
<b>while</b> (<i>Q != Ø</i>)
|
|
<i>u :=</i> EXTRACT-MIN(<i>Q</i>)
|
|
<i>S := S U { u }</i>
|
|
<b>for</b> each vertex <i>v in Adj[u]</i>
|
|
<b>if</b> (<i>w(u,v) + d[u] < d[v]</i>)
|
|
<i>d[v] := w(u,v) + d[u]</i>
|
|
<i>p[v] := u</i>
|
|
<b>if</b> (<i>color[v] =</i> WHITE)
|
|
<i>color[v] :=</i> GRAY
|
|
INSERT(<i>Q</i>, <i>v</i>)
|
|
<b>else if</b> (<i>color[v] =</i> GRAY)
|
|
DECREASE-KEY(<i>Q</i>, <i>v</i>)
|
|
<b>else</b>
|
|
<i>...</i>
|
|
<b>end for</b>
|
|
<i>color[u] :=</i> BLACK
|
|
<b>end while</b>
|
|
return (<i>d</i>, <i>p</i>)
|
|
</pre>
|
|
</td>
|
|
<td valign="top">
|
|
<pre>
|
|
|
|
initialize vertex <i>u</i>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
discover vertex <i>s</i>
|
|
|
|
examine vertex <i>u</i>
|
|
|
|
examine edge <i>(u,v)</i>
|
|
|
|
edge <i>(u,v)</i> relaxed
|
|
|
|
|
|
|
|
discover vertex <i>v</i>
|
|
|
|
|
|
|
|
edge <i>(u,v)</i> not relaxed
|
|
|
|
finish vertex <i>u</i>
|
|
</pre>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
<h3>Where Defined</h3>
|
|
|
|
<a href="../../../boost/graph/dijkstra_shortest_paths.hpp"><tt>boost/graph/dijkstra_shortest_paths.hpp</tt></a>
|
|
|
|
<h3>Parameters</h3>
|
|
|
|
IN: <tt>const Graph& g</tt>
|
|
<blockquote>
|
|
The graph object on which the algorithm will be applied.
|
|
The type <tt>Graph</tt> must be a model of
|
|
<a href="./VertexListGraph.html">Vertex List Graph</a>
|
|
and <a href="./IncidenceGraph.html">Incidence Graph</a>.<br>
|
|
|
|
<b>Python</b>: The parameter is named <tt>graph</tt>.
|
|
</blockquote>
|
|
|
|
IN: <tt>vertex_descriptor s</tt>
|
|
<blockquote>
|
|
The source vertex. All distance will be calculated from this vertex,
|
|
and the shortest paths tree will be rooted at this vertex.<br>
|
|
|
|
<b>Python</b>: The parameter is named <tt>root_vertex</tt>.
|
|
</blockquote>
|
|
|
|
<h3>Named Parameters</h3>
|
|
|
|
IN: <tt>weight_map(WeightMap w_map)</tt>
|
|
<blockquote>
|
|
The weight or ``length'' of each edge in the graph. The weights
|
|
must all be non-negative, and the algorithm will throw a
|
|
<a href="./exception.html#negative_edge"><tt>negative_edge</tt></a>
|
|
exception is one of the edges is negative.
|
|
The type <tt>WeightMap</tt> must be a model of
|
|
<a href="../../property_map/ReadablePropertyMap.html">Readable Property Map</a>. The edge descriptor type of
|
|
the graph needs to be usable as the key type for the weight
|
|
map. The value type for this map must be
|
|
the same as the value type of the distance map.<br>
|
|
<b>Default:</b> <tt>get(edge_weight, g)</tt><br>
|
|
|
|
<b>Python</b>: Must be an <tt>edge_double_map</tt> for the graph.<br>
|
|
<b>Python default</b>: <tt>graph.get_edge_double_map("weight")</tt>
|
|
</blockquote>
|
|
|
|
IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
|
|
<blockquote>
|
|
This maps each vertex to an integer in the range <tt>[0,
|
|
num_vertices(g))</tt>. This is necessary for efficient updates of the
|
|
heap data structure [<A
|
|
HREF="bibliography.html#driscoll88">61</A>] when an edge is relaxed.
|
|
The type
|
|
<tt>VertexIndexMap</tt> must be a model of
|
|
<a href="../../property_map/ReadablePropertyMap.html">Readable Property Map</a>. The value type of the map must be an
|
|
integer type. The vertex descriptor type of the graph needs to be
|
|
usable as the key type of the map.<br>
|
|
<b>Default:</b> <tt>get(vertex_index, g)</tt>.
|
|
Note: if you use this default, make sure your graph has
|
|
an internal <tt>vertex_index</tt> property. For example,
|
|
<tt>adjacenty_list</tt> with <tt>VertexList=listS</tt> does
|
|
not have an internal <tt>vertex_index</tt> property.
|
|
<br>
|
|
|
|
<b>Python</b>: Unsupported parameter.
|
|
</blockquote>
|
|
|
|
OUT: <tt>predecessor_map(PredecessorMap p_map)</tt>
|
|
<blockquote>
|
|
The predecessor map records the edges in the minimum spanning
|
|
tree. Upon completion of the algorithm, the edges <i>(p[u],u)</i>
|
|
for all <i>u in V</i> are in the minimum spanning tree. If <i>p[u] =
|
|
u</i> then <i>u</i> is either the source vertex or a vertex that is
|
|
not reachable from the source. The <tt>PredecessorMap</tt> type
|
|
must be a <a
|
|
href="../../property_map/ReadWritePropertyMap.html">Read/Write
|
|
Property Map</a> whose key and value types are the same as the vertex
|
|
descriptor type of the graph.<br>
|
|
<b>Default:</b> <tt>dummy_property_map</tt><br>
|
|
|
|
<b>Python</b>: Must be a <tt>vertex_vertex_map</tt> for the graph.<br>
|
|
</blockquote>
|
|
|
|
UTIL/OUT: <tt>distance_map(DistanceMap d_map)</tt>
|
|
<blockquote>
|
|
The shortest path weight from the source vertex <tt>s</tt> to each
|
|
vertex in the graph <tt>g</tt> is recorded in this property map. The
|
|
shortest path weight is the sum of the edge weights along the
|
|
shortest path. The type <tt>DistanceMap</tt> must be a model of <a
|
|
href="../../property_map/ReadWritePropertyMap.html">Read/Write
|
|
Property Map</a>. The vertex descriptor type of the graph needs to
|
|
be usable as the key type of the distance map.
|
|
|
|
The value type of the distance map is the element type of a <a
|
|
href="./Monoid.html">Monoid</a> formed with the <tt>combine</tt>
|
|
function object and the <tt>zero</tt> object for the identity
|
|
element. Also the distance value type must have a <a
|
|
href="http://www.sgi.com/tech/stl/StrictWeakOrdering.html">
|
|
StrictWeakOrdering</a> provided by the <tt>compare</tt> function
|
|
object.<br>
|
|
<b>Default:</b> <a
|
|
href="../../property_map/iterator_property_map.html">
|
|
<tt>iterator_property_map</tt></a> created from a
|
|
<tt>std::vector</tt> of the <tt>WeightMap</tt>'s value type of size
|
|
<tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index
|
|
map.<br>
|
|
|
|
<b>Python</b>: Must be a <tt>vertex_double_map</tt> for the graph.<br>
|
|
</blockquote>
|
|
|
|
IN: <tt>distance_compare(CompareFunction cmp)</tt>
|
|
<blockquote>
|
|
This function is use to compare distances to determine which vertex
|
|
is closer to the source vertex. The <tt>CompareFunction</tt> type
|
|
must be a model of <a
|
|
href="http://www.sgi.com/tech/stl/BinaryPredicate.html">Binary
|
|
Predicate</a> and have argument types that match the value type of
|
|
the <tt>DistanceMap</tt> property map.<br>
|
|
|
|
<b>Default:</b>
|
|
<tt>std::less<D></tt> with <tt>D=typename
|
|
property_traits<DistanceMap>::value_type</tt><br>
|
|
|
|
<b>Python</b>: Unsupported parameter.
|
|
</blockquote>
|
|
|
|
IN: <tt>distance_combine(CombineFunction cmb)</tt>
|
|
<blockquote>
|
|
This function is used to combine distances to compute the distance
|
|
of a path. The <tt>CombineFunction</tt> type must be a model of <a
|
|
href="http://www.sgi.com/tech/stl/BinaryFunction.html">Binary
|
|
Function</a>. The first argument type of the binary function must
|
|
match the value type of the <tt>DistanceMap</tt> property map and
|
|
the second argument type must match the value type of the
|
|
<tt>WeightMap</tt> property map. The result type must be the same
|
|
type as the distance value type.<br>
|
|
|
|
<b>Default:</b> <tt>std::plus<D></tt> with
|
|
<tt>D=typename property_traits<DistanceMap>::value_type</tt><br>
|
|
|
|
<b>Python</b>: Unsupported parameter.
|
|
</blockquote>
|
|
|
|
IN: <tt>distance_inf(D inf)</tt>
|
|
<blockquote>
|
|
The <tt>inf</tt> object must be the greatest value of any <tt>D</tt> object.
|
|
That is, <tt>compare(d, inf) == true</tt> for any <tt>d != inf</tt>.
|
|
The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br>
|
|
<b>Default:</b> <tt>std::numeric_limits<D>::max()</tt><br>
|
|
|
|
<b>Python</b>: Unsupported parameter.
|
|
</blockquote>
|
|
|
|
IN: <tt>distance_zero(D zero)</tt>
|
|
<blockquote>
|
|
The <tt>zero</tt> value must be the identity element for the
|
|
<a href="./Monoid.html">Monoid</a> formed by the distance values
|
|
and the <tt>combine</tt> function object.
|
|
The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br>
|
|
<b>Default:</b> <tt>D()</tt>with
|
|
<tt>D=typename property_traits<DistanceMap>::value_type</tt><br>
|
|
|
|
<b>Python</b>: Unsupported parameter.
|
|
</blockquote>
|
|
|
|
UTIL/OUT: <tt>color_map(ColorMap c_map)</tt>
|
|
<blockquote>
|
|
This is used during the execution of the algorithm to mark the
|
|
vertices. The vertices start out white and become gray when they are
|
|
inserted in the queue. They then turn black when they are removed
|
|
from the queue. At the end of the algorithm, vertices reachable from
|
|
the source vertex will have been colored black. All other vertices
|
|
will still be white. The type <tt>ColorMap</tt> must be a model of
|
|
<a href="../../property_map/ReadWritePropertyMap.html">Read/Write
|
|
Property Map</a>. A vertex descriptor must be usable as the key type
|
|
of the map, and the value type of the map must be a model of
|
|
<a href="./ColorValue.html">Color Value</a>.<br>
|
|
<b>Default:</b> an <a
|
|
href="../../property_map/iterator_property_map.html">
|
|
<tt>iterator_property_map</tt></a> created from a <tt>std::vector</tt>
|
|
of <tt>default_color_type</tt> of size <tt>num_vertices(g)</tt> and
|
|
using the <tt>i_map</tt> for the index map.<br>
|
|
|
|
<b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for
|
|
the graph.
|
|
</blockquote>
|
|
|
|
OUT: <tt>visitor(DijkstraVisitor v)</tt>
|
|
<blockquote>
|
|
Use this to specify actions that you would like to happen
|
|
during certain event points within the algorithm.
|
|
The type <tt>DijkstraVisitor</tt> must be a model of the
|
|
<a href="./DijkstraVisitor.html">Dijkstra Visitor</a> concept.
|
|
The visitor object is passed by value <a
|
|
href="#2">[2]</a>.<br>
|
|
<b>Default:</b> <tt>dijkstra_visitor<null_visitor></tt><br>
|
|
|
|
<b>Python</b>: The parameter should be an object that derives from
|
|
the <a
|
|
href="DijkstraVisitor.html#python"><tt>DijkstraVisitor</tt></a> type
|
|
of the graph.
|
|
</blockquote>
|
|
|
|
|
|
<H3>Complexity</H3>
|
|
|
|
<P>
|
|
The time complexity is <i>O(V log V)</i>.
|
|
|
|
|
|
<h3>Visitor Event Points</h3>
|
|
|
|
<ul>
|
|
<li><b><tt>vis.initialize_vertex(u, g)</tt></b>
|
|
is invoked on each vertex in the graph before the start of the
|
|
algorithm.
|
|
<li><b><tt>vis.examine_vertex(u, g)</tt></b>
|
|
is invoked on a vertex as it is removed from the priority queue
|
|
and added to set <i>S</i>. At this point we know that <i>(p[u],u)</i>
|
|
is a shortest-paths tree edge so
|
|
<i>d[u] = delta(s,u) = d[p[u]] + w(p[u],u)</i>. Also, the distances
|
|
of the examined vertices is monotonically increasing
|
|
<i>d[u<sub>1</sub>] <= d[u<sub>2</sub>] <= d[u<sub>n</sub>]</i>.
|
|
<li><b><tt>vis.examine_edge(e, g)</tt></b>
|
|
is invoked on each out-edge of a vertex immediately after it has
|
|
been added to set <i>S</i>.
|
|
<li><b><tt>vis.edge_relaxed(e, g)</tt></b>
|
|
is invoked on edge <i>(u,v)</i> if <i>d[u] + w(u,v) < d[v]</i>.
|
|
The edge <i>(u,v)</i> that participated in the last
|
|
relaxation for vertex <i>v</i> is an edge in the shortest paths tree.
|
|
<li><b><tt>vis.discover_vertex(v, g)</tt></b>
|
|
is invoked on vertex <i>v</i> when the edge
|
|
<i>(u,v)</i> is examined and <i>v</i> is WHITE. Since
|
|
a vertex is colored GRAY when it is discovered,
|
|
each reacable vertex is discovered exactly once. This
|
|
is also when the vertex is inserted into the priority queue.
|
|
<li><b><tt>vis.edge_not_relaxed(e, g)</tt></b>
|
|
is invoked if the edge is not relaxed (see above).
|
|
<li><b><tt>vis.finish_vertex(u, g)</tt></b>
|
|
is invoked on a vertex after all of its out edges have
|
|
been examined.
|
|
</ul>
|
|
|
|
<H3>Example</H3>
|
|
|
|
<P>
|
|
See <a href="../example/dijkstra-example.cpp">
|
|
<TT>example/dijkstra-example.cpp</TT></a> for an example of using Dijkstra's
|
|
algorithm.
|
|
|
|
<H3>Notes</H3>
|
|
|
|
<a name="1">[1]</a>
|
|
The algorithm used here saves a little space by not putting all <i>V -
|
|
S</i> vertices in the priority queue at once, but instead only those
|
|
vertices in <i>V - S</i> that are discovered and therefore have a
|
|
distance less than infinity.
|
|
|
|
<p><a name="2">[2]</a>
|
|
Since the visitor parameter is passed by value, if your visitor
|
|
contains state then any changes to the state during the algorithm
|
|
will be made to a copy of the visitor object, not the visitor object
|
|
passed in. Therefore you may want the visitor to hold this state by
|
|
pointer or reference.
|
|
|
|
<br>
|
|
<HR>
|
|
<TABLE>
|
|
<TR valign=top>
|
|
<TD nowrap>Copyright © 2000-2001</TD><TD>
|
|
<A HREF="../../../people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
|
|
</TD></TR></TABLE>
|
|
|
|
</BODY>
|
|
</HTML>
|