graph/include/boost/pending/disjoint_sets.hpp
Marc Glisse 68ee7972df Don't look for representatives in link
The arguments are already required to be the representative of their
class. If we do not know the representatives, we are supposed to call
union_set instead, which first finds them.
2023-03-19 09:44:20 +01:00

212 lines
6.4 KiB
C++

//
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_DISJOINT_SETS_HPP
#define BOOST_DISJOINT_SETS_HPP
#include <vector>
#include <boost/graph/properties.hpp>
#include <boost/pending/detail/disjoint_sets.hpp>
namespace boost
{
struct find_with_path_halving
{
template < class ParentPA, class Vertex >
Vertex operator()(ParentPA p, Vertex v)
{
return detail::find_representative_with_path_halving(p, v);
}
};
struct find_with_full_path_compression
{
template < class ParentPA, class Vertex >
Vertex operator()(ParentPA p, Vertex v)
{
return detail::find_representative_with_full_compression(p, v);
}
};
// This is a generalized functor to provide disjoint sets operations
// with "union by rank" and "path compression". A disjoint-set data
// structure maintains a collection S={S1, S2, ..., Sk} of disjoint
// sets. Each set is identified by a representative, which is some
// member of of the set. Sets are represented by rooted trees. Two
// heuristics: "union by rank" and "path compression" are used to
// speed up the operations.
// Disjoint Set requires two vertex properties for internal use. A
// RankPA and a ParentPA. The RankPA must map Vertex to some Integral type
// (preferably the size_type associated with Vertex). The ParentPA
// must map Vertex to Vertex.
template < class RankPA, class ParentPA,
class FindCompress = find_with_full_path_compression >
class disjoint_sets
{
typedef disjoint_sets self;
inline disjoint_sets() {}
public:
inline disjoint_sets(RankPA r, ParentPA p) : rank(r), parent(p) {}
inline disjoint_sets(const self& c) : rank(c.rank), parent(c.parent) {}
// Make Set -- Create a singleton set containing vertex x
template < class Element > inline void make_set(Element x)
{
put(parent, x, x);
typedef typename property_traits< RankPA >::value_type R;
put(rank, x, R());
}
// Link - union the two sets represented by vertex x and y
template < class Element > inline void link(Element x, Element y)
{
detail::link_sets(parent, rank, x, y);
}
// Union-Set - union the two sets containing vertex x and y
template < class Element > inline void union_set(Element x, Element y)
{
link(find_set(x), find_set(y));
}
// Find-Set - returns the Element representative of the set
// containing Element x and applies path compression.
template < class Element > inline Element find_set(Element x)
{
return rep(parent, x);
}
template < class ElementIterator >
inline std::size_t count_sets(ElementIterator first, ElementIterator last)
{
std::size_t count = 0;
for (; first != last; ++first)
if (get(parent, *first) == *first)
++count;
return count;
}
template < class ElementIterator >
inline void normalize_sets(ElementIterator first, ElementIterator last)
{
for (; first != last; ++first)
detail::normalize_node(parent, *first);
}
template < class ElementIterator >
inline void compress_sets(ElementIterator first, ElementIterator last)
{
for (; first != last; ++first)
detail::find_representative_with_full_compression(parent, *first);
}
protected:
RankPA rank;
ParentPA parent;
FindCompress rep;
};
template < class ID = identity_property_map,
class InverseID = identity_property_map,
class FindCompress = find_with_full_path_compression >
class disjoint_sets_with_storage
{
typedef typename property_traits< ID >::value_type Index;
typedef std::vector< Index > ParentContainer;
typedef std::vector< unsigned char > RankContainer;
public:
typedef typename ParentContainer::size_type size_type;
disjoint_sets_with_storage(
size_type n = 0, ID id_ = ID(), InverseID inv = InverseID())
: id(id_), id_to_vertex(inv), rank(n, 0), parent(n)
{
for (Index i = 0; i < n; ++i)
parent[i] = i;
}
// note this is not normally needed
template < class Element > inline void make_set(Element x)
{
parent[x] = x;
rank[x] = 0;
}
template < class Element > inline void link(Element x, Element y)
{
extend_sets(x, y);
detail::link_sets(&parent[0], &rank[0], get(id, x), get(id, y));
}
template < class Element > inline void union_set(Element x, Element y)
{
Element rx = find_set(x);
Element ry = find_set(y);
link(rx, ry);
}
template < class Element > inline Element find_set(Element x)
{
return id_to_vertex[rep(&parent[0], get(id, x))];
}
template < class ElementIterator >
inline std::size_t count_sets(ElementIterator first, ElementIterator last)
{
std::size_t count = 0;
for (; first != last; ++first)
if (parent[*first] == *first)
++count;
return count;
}
template < class ElementIterator >
inline void normalize_sets(ElementIterator first, ElementIterator last)
{
for (; first != last; ++first)
detail::normalize_node(&parent[0], *first);
}
template < class ElementIterator >
inline void compress_sets(ElementIterator first, ElementIterator last)
{
for (; first != last; ++first)
detail::find_representative_with_full_compression(
&parent[0], *first);
}
const ParentContainer& parents() { return parent; }
protected:
template < class Element > inline void extend_sets(Element x, Element y)
{
Index needed
= get(id, x) > get(id, y) ? get(id, x) + 1 : get(id, y) + 1;
if (needed > parent.size())
{
rank.insert(rank.end(), needed - rank.size(), 0);
for (Index k = parent.size(); k < needed; ++k)
parent.push_back(k);
}
}
ID id;
InverseID id_to_vertex;
RankContainer rank;
ParentContainer parent;
FindCompress rep;
};
} // namespace boost
#endif // BOOST_DISJOINT_SETS_HPP