// Copyright (C) 2012, Michele Caini. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Two Graphs Common Spanning Trees Algorithm // Based on academic article of Mint, Read and Tarjan // Efficient Algorithm for Common Spanning Tree Problem // Electron. Lett., 28 April 1983, Volume 19, Issue 9, p.346-347 #include #include #include #include using namespace std; typedef boost::adjacency_list< boost::vecS, // OutEdgeList boost::vecS, // VertexList boost::undirectedS, // Directed boost::no_property, // VertexProperties boost::no_property, // EdgeProperties boost::no_property, // GraphProperties boost::listS // EdgeList > Graph; typedef boost::graph_traits< Graph >::vertex_descriptor vertex_descriptor; typedef boost::graph_traits< Graph >::edge_descriptor edge_descriptor; typedef boost::graph_traits< Graph >::vertex_iterator vertex_iterator; typedef boost::graph_traits< Graph >::edge_iterator edge_iterator; int main(int argc, char** argv) { Graph iG, vG; vector< edge_descriptor > iG_o; vector< edge_descriptor > vG_o; iG_o.push_back(boost::add_edge(0, 1, iG).first); iG_o.push_back(boost::add_edge(0, 2, iG).first); iG_o.push_back(boost::add_edge(0, 3, iG).first); iG_o.push_back(boost::add_edge(0, 4, iG).first); iG_o.push_back(boost::add_edge(1, 2, iG).first); iG_o.push_back(boost::add_edge(3, 4, iG).first); vG_o.push_back(boost::add_edge(1, 2, vG).first); vG_o.push_back(boost::add_edge(2, 0, vG).first); vG_o.push_back(boost::add_edge(2, 3, vG).first); vG_o.push_back(boost::add_edge(4, 3, vG).first); vG_o.push_back(boost::add_edge(0, 3, vG).first); vG_o.push_back(boost::add_edge(0, 4, vG).first); vector< bool > inL(iG_o.size(), false); std::vector< std::vector< bool > > coll; boost::tree_collector< std::vector< std::vector< bool > >, std::vector< bool > > tree_collector(coll); boost::two_graphs_common_spanning_trees( iG, iG_o, vG, vG_o, tree_collector, inL); for (auto const & vec : coll) { // Here you can play with the trees that the algorithm has found. } return 0; }