//======================================================================= // Copyright 2001 Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee, // // This file is part of the Boost Graph Library // // You should have received a copy of the License Agreement for the // Boost Graph Library along with the software; see the file LICENSE. // If not, contact Office of Research, Indiana University, // Bloomington, IN 47405. // // Permission to modify the code and to distribute the code is // granted, provided the text of this NOTICE is retained, a notice if // the code was modified is included with the above COPYRIGHT NOTICE // and with the COPYRIGHT NOTICE in the LICENSE file, and that the // LICENSE file is distributed with the modified code. // // LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. // By way of example, but not limitation, Licensor MAKES NO // REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY // PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS // OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS // OR OTHER RIGHTS. //======================================================================= #include #include #include #include #include #include namespace boost { template < typename Graph > std::pair < typename graph_traits < Graph >::vertex_descriptor, typename graph_traits < Graph >::degree_size_type > min_degree_vertex(Graph & g) { typename graph_traits < Graph >::vertex_descriptor p; typedef typename graph_traits < Graph >::degree_size_type size_type; size_type delta = std::numeric_limits < size_type >::max(); typename graph_traits < Graph >::vertex_iterator i, iend; for (tie(i, iend) = vertices(g); i != iend; ++i) if (degree(*i, g) < delta) { delta = degree(*i, g); p = *i; } return std::make_pair(p, delta); } template < typename Graph, typename OutputIterator > void neighbors(const Graph & g, typename graph_traits < Graph >::vertex_descriptor u, OutputIterator result) { typename graph_traits < Graph >::adjacency_iterator ai, aend; for (tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai) *result++ = *ai; } template < typename Graph, typename VertexIterator, typename OutputIterator > void neighbors(const Graph & g, VertexIterator first, VertexIterator last, OutputIterator result) { for (; first != last; ++first) neighbors(g, *first, result); } template < typename VertexListGraph, typename OutputIterator > typename graph_traits < VertexListGraph >::degree_size_type edge_connectivity(VertexListGraph & g, OutputIterator disconnecting_set) { typedef typename graph_traits < VertexListGraph >::vertex_descriptor vertex_descriptor; typedef typename graph_traits < VertexListGraph >::degree_size_type degree_size_type; typedef color_traits < default_color_type > Color; typedef typename adjacency_list_traits < vecS, vecS, directedS >::edge_descriptor edge_descriptor; typedef adjacency_list < vecS, vecS, directedS, no_property, property < edge_capacity_t, degree_size_type, property < edge_residual_capacity_t, degree_size_type, property < edge_reverse_t, edge_descriptor > >>>FlowGraph; vertex_descriptor u, v, p, k; edge_descriptor e1, e2; bool inserted; typename graph_traits < VertexListGraph >::vertex_iterator vi, vi_end; degree_size_type delta, alpha_star, alpha_S_k; std::set < vertex_descriptor > S, neighbor_S; std::vector < vertex_descriptor > S_star, nonneighbor_S; std::vector < default_color_type > color(num_vertices(g)); std::vector < edge_descriptor > pred(num_vertices(g)); FlowGraph flow_g(num_vertices(g)); typename property_map < FlowGraph, edge_capacity_t >::type cap = get(edge_capacity, flow_g); typename property_map < FlowGraph, edge_residual_capacity_t >::type res_cap = get(edge_residual_capacity, flow_g); typename property_map < FlowGraph, edge_reverse_t >::type rev_edge = get(edge_reverse, flow_g); typename graph_traits < VertexListGraph >::edge_iterator ei, ei_end; for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { u = source(*ei, g), v = target(*ei, g); tie(e1, inserted) = add_edge(u, v, flow_g); cap[e1] = 1; tie(e2, inserted) = add_edge(v, u, flow_g); cap[e2] = 1; rev_edge[e1] = e2; rev_edge[e2] = e1; } tie(p, delta) = min_degree_vertex(g); S_star.push_back(p); alpha_star = delta; S.insert(p); neighbor_S.insert(p); neighbors(g, S.begin(), S.end(), std::inserter(neighbor_S, neighbor_S.begin())); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(nonneighbor_S)); while (!nonneighbor_S.empty()) { k = nonneighbor_S.front(); alpha_S_k = edmunds_karp_max_flow (flow_g, p, k, capacity_map(cap).residual_capacity_map(res_cap). reverse_edge_map(rev_edge).color_map(&color[0]). predecessor_map(&pred[0])); if (alpha_S_k < alpha_star) { alpha_star = alpha_S_k; S_star.clear(); for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi) if (color[*vi] != Color::white()) S_star.push_back(*vi); } S.insert(k); neighbor_S.insert(k); neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin())); nonneighbor_S.clear(); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(nonneighbor_S)); } std::vector < bool > in_S_star(num_vertices(g), false); typename std::vector < vertex_descriptor >::iterator si; for (si = S_star.begin(); si != S_star.end(); ++si) in_S_star[*si] = true; degree_size_type c = 0; for (si = S_star.begin(); si != S_star.end(); ++si) { typename graph_traits < VertexListGraph >::out_edge_iterator ei, ei_end; for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei) if (!in_S_star[target(*ei, g)]) { *disconnecting_set++ = *ei; ++c; } } return c; } } int main() { using namespace boost; GraphvizGraph g; read_graphviz("figs/edge-connectivity.dot", g); typedef graph_traits < GraphvizGraph >::edge_descriptor edge_descriptor; typedef graph_traits < GraphvizGraph >::degree_size_type degree_size_type; std::vector < edge_descriptor > disconnecting_set; degree_size_type c = edge_connectivity(g, std::back_inserter(disconnecting_set)); std::cout << "The edge connectivity is " << c << "." << std::endl; property_map < GraphvizGraph, vertex_attribute_t >::type attr_map = get(vertex_attribute, g); std::cout << "The disconnecting set is {"; for (std::vector < edge_descriptor >::iterator i = disconnecting_set.begin(); i != disconnecting_set.end(); ++i) std:: cout << "(" << attr_map[source(*i, g)]["label"] << "," << attr_map[target(*i, g)]["label"] << ") "; std::cout << "}." << std::endl; return EXIT_SUCCESS; }