//======================================================================= // Copyright 2000 University of Notre Dame. // Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee // // This file is part of the Boost Graph Library // // You should have received a copy of the License Agreement for the // Boost Graph Library along with the software; see the file LICENSE. // If not, contact Office of Research, University of Notre Dame, Notre // Dame, IN 46556. // // Permission to modify the code and to distribute modified code is // granted, provided the text of this NOTICE is retained, a notice that // the code was modified is included with the above COPYRIGHT NOTICE and // with the COPYRIGHT NOTICE in the LICENSE file, and that the LICENSE // file is distributed with the modified code. // // LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. // By way of example, but not limitation, Licensor MAKES NO // REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY // PARTICULAR PURPOSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS // OR DOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADEMARKS // OR OTHER RIGHTS. //======================================================================= #include #include #include #include #include #include #include using namespace boost; template inline std::pair::vertex_descriptor, typename graph_traits::degree_size_type> min_degree_node(UndirGraph& g) { typename graph_traits::vertex_descriptor p; typedef typename graph_traits::degree_size_type size_type; size_type delta = std::numeric_limits::max(); typename graph_traits::vertex_iterator i, iend; for (tie(i, iend) = vertices(g); i != iend; ++i) if (degree(*i, g) < delta) { delta = degree(*i, g); p = *i; } return std::make_pair(p, delta); } template void neighbors(const Graph& g, typename graph_traits::vertex_descriptor u, OutputIterator result) { typename graph_traits::adjacency_iterator ai, aend; for (tie(ai, aend) = out_edges(u, g); ai != aend; ++ai) *result++ = *ai; } template void neighbors(const Graph& g, VertexIterator first, VertexIterator last, OutputIterator result) { for (; first != last; ++first) neighbors(g, *first, result); } template typename graph_traits::degree_size_type edge_connectivity(UndirGraph& g, OutputIterator disconnecting_set) { //--------------------------------------------------------------------------- // Type Definitions typedef graph_traits Traits; typedef typename Traits::vertex_iterator vertex_iterator; typedef typename Traits::edge_iterator edge_iterator; typedef typename Traits::out_edge_iterator out_edge_iterator; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename Traits::degree_size_type degree_size_type; typedef color_traits Color; typedef adjacency_list_traits Tr; typedef adjacency_list > > > FlowGraph; typedef typename graph_traits::edge_descriptor edge_descriptor; //--------------------------------------------------------------------------- // Variable Declarations vertex_descriptor u, v, p, k; edge_descriptor e1, e2; bool inserted; vertex_iterator vi, vi_end; edge_iterator ei, ei_end; degree_size_type delta, alpha_star, alpha_S_k; std::set S, neighbor_S; std::vector S_star, non_neighbor_S; std::vector color(num_vertices(g)); std::vector pred(num_vertices(g)); //--------------------------------------------------------------------------- // Create a network flow graph out of the undirected graph FlowGraph flow_g(num_vertices(g)); typename property_map::type cap = get(edge_capacity, flow_g); typename property_map::type res_cap = get(edge_residual_capacity, flow_g); typename property_map::type rev_edge = get(edge_reverse, flow_g); for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) { u = source(*ei, g), v = target(*ei, g); tie(e1, inserted) = add_edge(u, v, flow_g); cap[e1] = 1; tie(e2, inserted) = add_edge(v, u, flow_g); cap[e2] = 1; // not sure about this rev_edge[e1] = e2; rev_edge[e2] = e1; } //--------------------------------------------------------------------------- // now for the algorithm tie(p, delta) = min_degree_node(g); S_star.push_back(p); alpha_star = delta; S.insert(p); neighbor_S.insert(p); neighbors(g, S.begin(), S.end(), std::inserter(neighbor_S, neighbor_S.begin())); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(non_neighbor_S)); while (!non_neighbor_S.empty()) { k = non_neighbor_S.front(); alpha_S_k = edmunds_karp_max_flow(flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]); if (alpha_S_k < alpha_star) { alpha_star = alpha_S_k; S_star.clear(); for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi) if (color[*vi] != Color::white()) S_star.push_back(*vi); } S.insert(k); neighbor_S.insert(k); neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin())); non_neighbor_S.clear(); std::set_difference(vertices(g).first, vertices(g).second, neighbor_S.begin(), neighbor_S.end(), std::back_inserter(non_neighbor_S)); } //--------------------------------------------------------------------------- // Compute forward edges of the cut [S*, ~S*] std::vector in_S_star(num_vertices(g), false); typename std::vector::iterator si; for (si = S_star.begin(); si != S_star.end(); ++si) in_S_star[*si] = true; degree_size_type c = 0; for (si = S_star.begin(); si != S_star.end(); ++si) { out_edge_iterator ei, ei_end; for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei) if (!in_S_star[target(*ei, g)]) { *disconnecting_set++ = *ei; ++c; } } return c; } int main() { const int N = 8; typedef adjacency_list UndirGraph; UndirGraph g(N); add_edge(0, 1, g); add_edge(0, 2, g); add_edge(0, 3, g); add_edge(1, 2, g); add_edge(1, 3, g); add_edge(2, 3, g); add_edge(3, 4, g); add_edge(3, 7, g); add_edge(4, 5, g); add_edge(4, 6, g); add_edge(4, 7, g); add_edge(5, 6, g); add_edge(5, 7, g); add_edge(6, 7, g); typedef graph_traits::edge_descriptor edge_descriptor; typedef graph_traits::degree_size_type degree_size_type; std::vector disconnecting_set; degree_size_type c = edge_connectivity(g, back_inserter(disconnecting_set)); std::cout << "The edge connectivity is " << c << "." << std::endl; std::cout << "The disconnecting set is {"; std::copy(disconnecting_set.begin(), disconnecting_set.end(), std::ostream_iterator(std::cout, " ")); std::cout << "}." << std::endl; return 0; }