//======================================================================= // Copyright 2007 Aaron Windsor // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= /* This test is almost identical to all_planar_input_files_test.cpp except that parallel edges and loops are added to the graphs as they are read in. This test needs to be linked against Boost.Filesystem. */ #define BOOST_FILESYSTEM_VERSION 3 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace boost; struct coord_t { std::size_t x; std::size_t y; }; template < typename Graph > void read_dimacs(Graph& g, const std::string& filename) { // every th vertex has a self-loop int vertex_stride = 5; // on vertices with self loops, there are between 1 and // loops int max_loop_multiplicity = 6; // every th edge is a parallel edge int edge_stride = 7; // parallel edges come in groups of 2 to + 1 int max_edge_multiplicity = 5; typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t; typedef typename graph_traits< Graph >::vertex_descriptor vertex_t; std::vector< vertex_t > vertices_by_index; std::ifstream in(filename.c_str()); long num_edges_added = 0; long num_parallel_edges = 0; while (!in.eof()) { char buffer[256]; in.getline(buffer, 256); std::string s(buffer); if (s.size() == 0) continue; std::vector< std::string > v; split(v, buffer, is_any_of(" \t\n")); if (v[0] == "p") { // v[1] == "edge" long num_vertices = boost::lexical_cast< long >(v[2].c_str()); g = Graph(num_vertices); vertex_iterator_t vi, vi_end; long count = 0; long mult_count = 0; for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { if (count % vertex_stride == 0) { for (int i = 0; i < (mult_count % max_loop_multiplicity) + 1; ++i) { add_edge(*vi, *vi, g); } ++mult_count; } ++count; } std::copy(vertices(g).first, vertices(g).second, std::back_inserter(vertices_by_index)); } else if (v[0] == "e") { add_edge( vertices_by_index[boost::lexical_cast< long >(v[1].c_str())], vertices_by_index[boost::lexical_cast< long >(v[2].c_str())], g); if (num_edges_added % edge_stride == 0) { for (int i = 0; i < (num_parallel_edges % max_edge_multiplicity) + 1; ++i) { add_edge(vertices_by_index[boost::lexical_cast< long >( v[1].c_str())], vertices_by_index[boost::lexical_cast< long >( v[2].c_str())], g); } ++num_parallel_edges; } ++num_edges_added; } } } struct face_counter : planar_face_traversal_visitor { face_counter() : m_num_faces(0) {} void begin_face() { ++m_num_faces; } long num_faces() { return m_num_faces; } private: long m_num_faces; }; int test_graph(const std::string& dimacs_filename) { typedef adjacency_list< listS, vecS, undirectedS, property< vertex_index_t, int >, property< edge_index_t, int > > graph; typedef graph_traits< graph >::edge_descriptor edge_t; typedef graph_traits< graph >::edge_iterator edge_iterator_t; typedef graph_traits< graph >::vertex_iterator vertex_iterator_t; typedef graph_traits< graph >::edges_size_type e_size_t; typedef graph_traits< graph >::vertex_descriptor vertex_t; typedef edge_index_update_visitor< property_map< graph, edge_index_t >::type > edge_visitor_t; vertex_iterator_t vi, vi_end; edge_iterator_t ei, ei_end; graph g; read_dimacs(g, dimacs_filename); // Initialize the interior edge index property_map< graph, edge_index_t >::type e_index = get(edge_index, g); e_size_t edge_count = 0; for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) put(e_index, *ei, edge_count++); // Initialize the interior vertex index - not needed if the vertices // are stored with a vecS /* property_map::type v_index = get(vertex_index, g); v_size_t vertex_count = 0; for(boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) put(v_index, *vi, vertex_count++); */ // This edge_updater will automatically update the interior edge // index of the graph as edges are created. edge_visitor_t edge_updater(get(edge_index, g), num_edges(g)); // The input graph may not be maximal planar, but the Chrobak-Payne straight // line drawing needs a maximal planar graph as input. So, we make a copy of // the original graph here, then add edges to the graph to make it maximal // planar. When we're done creating a drawing of the maximal planar graph, // we can use the same mapping of vertices to points on the grid to embed // the original, non-maximal graph. graph g_copy(g); // Add edges to make g connected, if it isn't already make_connected(g, get(vertex_index, g), edge_updater); std::vector< graph_traits< graph >::edge_descriptor > kuratowski_edges; typedef std::vector< std::vector< edge_t > > edge_permutation_storage_t; typedef boost::iterator_property_map< edge_permutation_storage_t::iterator, property_map< graph, vertex_index_t >::type > edge_permutation_t; edge_permutation_storage_t edge_permutation_storage(num_vertices(g)); edge_permutation_t perm( edge_permutation_storage.begin(), get(vertex_index, g)); // Test for planarity, computing the planar embedding or the kuratowski // subgraph. if (!boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g, boyer_myrvold_params::embedding = perm, boyer_myrvold_params::kuratowski_subgraph = std::back_inserter(kuratowski_edges))) { std::cerr << "Not planar. "; BOOST_TEST(is_kuratowski_subgraph( g, kuratowski_edges.begin(), kuratowski_edges.end())); return 0; } // If we get this far, we have a connected planar graph. make_biconnected_planar(g, perm, get(edge_index, g), edge_updater); // Compute the planar embedding of the (now) biconnected planar graph BOOST_TEST(boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g, boyer_myrvold_params::embedding = perm)); // If we get this far, we have a biconnected planar graph make_maximal_planar( g, perm, get(vertex_index, g), get(edge_index, g), edge_updater); // Now the graph is triangulated - we can compute the final planar embedding BOOST_TEST(boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g, boyer_myrvold_params::embedding = perm)); // Make sure Euler's formula holds face_counter vis; planar_face_traversal(g, perm, vis, get(edge_index, g)); BOOST_TEST(num_vertices(g) - num_edges(g) + vis.num_faces() == 2); // Compute a planar canonical ordering of the vertices std::vector< vertex_t > ordering; planar_canonical_ordering(g, perm, std::back_inserter(ordering)); BOOST_TEST(ordering.size() == num_vertices(g)); typedef std::vector< coord_t > drawing_storage_t; typedef boost::iterator_property_map< drawing_storage_t::iterator, property_map< graph, vertex_index_t >::type > drawing_map_t; drawing_storage_t drawing_vector(num_vertices(g)); drawing_map_t drawing(drawing_vector.begin(), get(vertex_index, g)); // Compute a straight line drawing chrobak_payne_straight_line_drawing( g, perm, ordering.begin(), ordering.end(), drawing); std::cerr << "Planar. "; BOOST_TEST(is_straight_line_drawing(g, drawing)); return 0; } int main(int argc, char* argv[]) { std::string input_directory_str = "planar_input_graphs"; if (argc > 1) { input_directory_str = std::string(argv[1]); } std::cout << "Reading planar input files from " << input_directory_str << std::endl; filesystem::path input_directory = filesystem::system_complete(filesystem::path(input_directory_str)); const std::string dimacs_extension = ".dimacs"; filesystem::directory_iterator dir_end; for (filesystem::directory_iterator dir_itr(input_directory); dir_itr != dir_end; ++dir_itr) { if (dir_itr->path().extension() != dimacs_extension) continue; std::cerr << "Testing " << dir_itr->path().filename() << "... "; BOOST_TEST(test_graph(dir_itr->path().string()) == 0); std::cerr << std::endl; } return boost::report_errors(); }