geometry/example/c08_custom_non_std_example.cpp
2010-01-31 21:23:07 +00:00

327 lines
8.5 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
//
// Copyright Barend Gehrels 2009, Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// Custom polygon example
#ifndef _MSC_VER
#warning "Currently only works for MSVC"
int main() { return 0; }
#else
#include <iostream>
#include <boost/iterator.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/geometry/geometry.hpp>
#include <boost/geometry/geometries/register/point.hpp>
#include <boost/geometry/geometries/register/ring.hpp>
#include <boost/geometry/util/add_const_if_c.hpp>
// Sample point, having x/y
struct my_point
{
my_point(double a = 0, double b = 0)
: x(a), y(b)
{}
double x,y;
};
// Sample polygon, having legacy methods
// (similar to e.g. COM objects)
class my_polygon
{
std::vector<my_point> points;
public :
void add_point(my_point const& p) { points.push_back(p); }
my_point const& get_point(std::size_t i) const
{
assert(i < points.size());
return points[i];
}
// Non const access
my_point & get_point(std::size_t i)
{
assert(i < points.size());
return points[i];
}
int point_count() const { return points.size(); }
void erase_all() { points.clear(); }
// Note: it IS possible to have different method names;
// however, there should (probably) be two different
// iterators then or an iterator with a specified policy).
// Note 2: if there is a set_point function, the iterator
// does not have a way to dereference and non-const
// iterators will not work!
};
// ----------------------------------------------------------------------------
// Adaption: implement iterator and range-extension, and register with GGL
// 1) implement iterator (const and non-const versions)
template <bool IsConst>
struct custom_iterator : public boost::iterator_facade
<
custom_iterator<IsConst>,
my_point,
boost::random_access_traversal_tag,
typename boost::geometry::add_const_if_c<IsConst, my_point>::type&
>
{
// Constructor for begin()
explicit custom_iterator(typename boost::geometry::add_const_if_c<IsConst, my_polygon>::type& polygon)
: m_polygon(&polygon)
, m_index(0)
{}
// Constructor for end()
explicit custom_iterator(bool, typename boost::geometry::add_const_if_c<IsConst, my_polygon>::type& polygon)
: m_polygon(&polygon)
, m_index(polygon.point_count())
{}
private:
friend class boost::iterator_core_access;
typedef boost::iterator_facade
<
custom_iterator<IsConst>,
my_point,
boost::random_access_traversal_tag,
typename boost::geometry::add_const_if_c<IsConst, my_point>::type&
> facade;
typename boost::geometry::add_const_if_c<IsConst, my_polygon>::type* m_polygon;
int m_index;
bool equal(custom_iterator const& other) const
{
return this->m_index == other.m_index;
}
typename facade::difference_type distance_to(custom_iterator const& other) const
{
return other.m_index - this->m_index;
}
void advance(typename facade::difference_type n)
{
m_index += n;
if(m_polygon != NULL
&& (m_index >= m_polygon->point_count()
|| m_index < 0)
)
{
m_index = m_polygon->point_count();
}
}
void increment()
{
advance(1);
}
void decrement()
{
advance(-1);
}
// const and non-const dereference of this iterator
typename boost::geometry::add_const_if_c<IsConst, my_point>::type& dereference() const
{
return m_polygon->get_point(m_index);
}
};
// 2) Implement Boost.Range const functionality
// using method 2, "provide free-standing functions and specialize metafunctions"
// 2a) meta-functions
namespace boost
{
template<> struct range_iterator<my_polygon>
{
typedef custom_iterator<false> type;
};
template<> struct range_const_iterator<my_polygon>
{
typedef custom_iterator<true> type;
};
// RangeEx
template<> struct range_size<my_polygon>
{
typedef std::size_t type;
};
} // namespace 'boost'
// 2b) free-standing function for Boost.Range ADP
inline custom_iterator<false> range_begin(my_polygon& polygon)
{
return custom_iterator<false>(polygon);
}
inline custom_iterator<true> range_begin(my_polygon const& polygon)
{
return custom_iterator<true>(polygon);
}
inline custom_iterator<false> range_end(my_polygon& polygon)
{
return custom_iterator<false>(true, polygon);
}
inline custom_iterator<true> range_end(my_polygon const& polygon)
{
return custom_iterator<true>(true, polygon);
}
// RangeEx
inline std::size_t range_size(my_polygon const& polygon)
{
return polygon.point_count();
}
// 3) optional, for writable geometries only, implement back_inserter (=push_back)
class custom_insert_iterator
{
my_polygon* m_polygon;
public:
typedef std::output_iterator_tag iterator_category;
// Not relevant for output iterator
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
typedef void const_reference;
explicit custom_insert_iterator(my_polygon& x)
: m_polygon(&x)
{}
custom_insert_iterator& operator=(my_point const & p)
{
m_polygon->add_point(p);
return *this;
}
custom_insert_iterator& operator*() { return *this; }
custom_insert_iterator& operator++() { return *this; }
custom_insert_iterator& operator++(int) { return *this; }
};
namespace std
{
custom_insert_iterator back_inserter(my_polygon& polygon)
{
return custom_insert_iterator(polygon);
}
}
// 4) register with GGL
BOOST_GEOMETRY_REGISTER_POINT_2D(my_point, double, cs::cartesian, x, y)
BOOST_GEOMETRY_REGISTER_RING(my_polygon)
// end adaption
// ----------------------------------------------------------------------------
void walk_using_iterator(my_polygon const& polygon)
{
for (custom_iterator<true> it = custom_iterator<true>(polygon);
it != custom_iterator<true>(true, polygon);
++it)
{
std::cout << boost::geometry::dsv(*it) << std::endl;
}
std::cout << std::endl;
}
void walk_using_range(my_polygon const& polygon)
{
for (boost::range_iterator<const my_polygon>::type it
= boost::begin(polygon);
it != boost::end(polygon);
++it)
{
std::cout << boost::geometry::dsv(*it) << std::endl;
}
std::cout << std::endl;
}
int main()
{
my_polygon container1;
// Create (as an example) a regular polygon
const int n = 5;
const double d = (360 / n) * boost::geometry::math::d2r;
double a = 0;
for (int i = 0; i < n + 1; i++, a += d)
{
container1.add_point(my_point(sin(a), cos(a)));
}
std::cout << "Walk using Boost.Iterator derivative" << std::endl;
walk_using_iterator(container1);
std::cout << "Walk using Boost.Range extension" << std::endl << std::endl;
walk_using_range(container1);
std::cout << "Use it by GGL" << std::endl;
std::cout << "Area: " << boost::geometry::area(container1) << std::endl;
// Container 2 will be modified by GGL. Add all points but the last one.
my_polygon container2;
for (int i = 0; i < n; i++)
{
// Use here the std::/GGL way of inserting (but the my_polygon way of getting)
*(std::back_inserter(container2)++) = container1.get_point(i);
}
std::cout << "Second container is not closed:" << std::endl;
walk_using_range(container2);
// Correct (= close it)
boost::geometry::correct(container2);
std::cout << "Now it is closed:" << std::endl;
walk_using_range(container2);
std::cout << "Area: " << boost::geometry::area(container2) << std::endl;
// Use things from std:: using Boost.Range
std::reverse(boost::begin(container2), boost::end(container2));
std::cout << "Area reversed: " << boost::geometry::area(container2) << std::endl;
return 0;
}
#endif