// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2020 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2021. // Modifications copyright (c) 2021, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef GEOMETRY_TEST_EXPECTATION_LIMITS_HPP #define GEOMETRY_TEST_EXPECTATION_LIMITS_HPP #include #include // Structure to manage expectations: there might be small variations in area, for different // types or options, which are all acceptable. With tolerance this is inconvenient. // The values are stored as doubles, but the member functions accept any type, // also for example Boost.MultiPrecision types struct expectation_limits { expectation_limits(double expectation) : m_lower_limit(expectation) , m_upper_limit(expectation) { } expectation_limits(double lower_limit, double upper_limit) : m_lower_limit(lower_limit) , m_upper_limit(upper_limit) { } double get() const { return m_lower_limit; } bool is_zero() const { return m_lower_limit < 1.0e-8; } bool has_two_limits() const { return m_lower_limit < m_upper_limit; } template bool contains_logarithmic(const T& value, double tolerance) const { using std::abs; using std::log; return abs(log(value) - std::log(m_lower_limit)) < tolerance; } template bool contains(const T& value, double percentage, bool logarithmic = false) const { if (m_upper_limit < 1.0e-8) { return value < 1.0e-8; } if (logarithmic) { return contains_logarithmic(value, percentage); } // Note the > and <= and percentages, this is to make it exactly equivalent to // BOOST_CHECK_CLOSE(m_lower_limit, value, percentage) (if lower == upper) // But for two limits and optional slivers, >= is needed (for 0.00) double const fraction = percentage / 100.0; double const lower_limit = m_lower_limit * (1.0 - fraction); double const upper_limit = m_upper_limit * (1.0 + fraction); return has_two_limits() ? value >= lower_limit && value <= upper_limit : value > lower_limit && value <= upper_limit; } expectation_limits operator+(const expectation_limits& a) const { return this->has_two_limits() || a.has_two_limits() ? expectation_limits(this->m_lower_limit + a.m_lower_limit, this->m_upper_limit + a.m_upper_limit) : expectation_limits(this->m_lower_limit + a.m_lower_limit); } friend std::ostream &operator<<(std::ostream &os, const expectation_limits& lim) { if (lim.has_two_limits()) { os << "[" << lim.m_lower_limit << " .. " << lim.m_upper_limit << "]"; } else { os << lim.m_lower_limit; } return os; } private : double const m_lower_limit; double const m_upper_limit; }; inline expectation_limits optional_sliver(double upper_limit = 1.0e-4) { return expectation_limits(0, upper_limit); } #endif // GEOMETRY_TEST_EXPECTATION_LIMITS_HPP