mirror of
https://github.com/boostorg/geometry.git
synced 2025-05-11 13:34:10 +00:00
[area] Addressing comments
This commit is contained in:
parent
930719bad3
commit
fd12b69ee6
@ -24,7 +24,6 @@ namespace strategy { namespace area
|
||||
\brief Geographic area calculation by trapezoidal rule plus integral
|
||||
approximation that gives the ellipsoidal correction
|
||||
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
|
@ -1,288 +0,0 @@
|
||||
// Boost.Geometry (aka GGL, Generic Geometry Library)
|
||||
|
||||
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
|
||||
|
||||
// This file was modified by Oracle on 2015, 2016.
|
||||
// Modifications copyright (c) 2015, 2016 Oracle and/or its affiliates.
|
||||
|
||||
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
|
||||
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
|
||||
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
||||
|
||||
// Use, modification and distribution is subject to the Boost Software License,
|
||||
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_AREA_HUILLER_HPP
|
||||
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_AREA_HUILLER_HPP
|
||||
|
||||
|
||||
|
||||
#include <boost/geometry/strategies/spherical/distance_haversine.hpp>
|
||||
|
||||
#include <boost/geometry/core/radian_access.hpp>
|
||||
#include <boost/geometry/util/math.hpp>
|
||||
|
||||
|
||||
namespace boost { namespace geometry
|
||||
{
|
||||
|
||||
namespace strategy { namespace area
|
||||
{
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
\brief Area calculation by spherical excess / Huiller's formula
|
||||
\ingroup strategies
|
||||
\tparam PointOfSegment point type of segments of rings/polygons
|
||||
\tparam CalculationType \tparam_calculation
|
||||
\author Barend Gehrels. Adapted from:
|
||||
- http://webdocs.cs.ualberta.ca/~graphics/books/GraphicsGems/gemsiv/sph_poly.c
|
||||
- http://tog.acm.org/resources/GraphicsGems/gemsiv/sph_poly.c
|
||||
- http://williams.best.vwh.net/avform.htm
|
||||
\note The version in Graphics Gems IV (page 132-137) didn't account for
|
||||
polygons crossing the 0 and 180 meridians. The fix for this algorithm
|
||||
can be found in Graphics Gems V (pages 45-46). See:
|
||||
- http://kysmykseka.net/koti/wizardry/Game%20Development/Programming/Graphics%20Gems%204.pdf
|
||||
- http://kysmykseka.net/koti/wizardry/Game%20Development/Programming/Graphics%20Gems%205.pdf
|
||||
\note This version works for convex and non-convex polygons, for 180 meridian
|
||||
crossing polygons and for polygons with holes. However, some cases (especially
|
||||
180 meridian cases) must still be checked.
|
||||
\note The version which sums angles, which is often seen, doesn't handle non-convex
|
||||
polygons correctly.
|
||||
\note The version which sums longitudes, see http://hdl.handle.net/2014/40409,
|
||||
is simple and works well in most cases but not in 180 meridian crossing cases.
|
||||
This probably could be solved.
|
||||
|
||||
\note This version is made for spherical equatorial coordinate systems
|
||||
|
||||
\qbk{
|
||||
|
||||
[heading Example]
|
||||
[area_with_strategy]
|
||||
[area_with_strategy_output]
|
||||
|
||||
|
||||
[heading See also]
|
||||
[link geometry.reference.algorithms.area.area_2_with_strategy area (with strategy)]
|
||||
}
|
||||
|
||||
*/
|
||||
template
|
||||
<
|
||||
typename PointOfSegment,
|
||||
typename CalculationType = void
|
||||
>
|
||||
class huiller
|
||||
{
|
||||
typedef typename boost::mpl::if_c
|
||||
<
|
||||
boost::is_void<CalculationType>::type::value,
|
||||
typename select_most_precise
|
||||
<
|
||||
typename coordinate_type<PointOfSegment>::type,
|
||||
double
|
||||
>::type,
|
||||
CalculationType
|
||||
>::type calculation_type;
|
||||
|
||||
protected :
|
||||
struct excess_sum
|
||||
{
|
||||
calculation_type sum;
|
||||
|
||||
calculation_type max_lon, min_lon;
|
||||
|
||||
// Distances are calculated on unit sphere here
|
||||
strategy::distance::haversine<calculation_type> distance_over_unit_sphere;
|
||||
|
||||
// Keep track if encircles some pole
|
||||
size_t crosses_prime_meridian;
|
||||
|
||||
bool south; // true if has no point on North hemisphere
|
||||
bool south_vertex; // true if South pole is a vertex
|
||||
|
||||
inline excess_sum()
|
||||
: sum(0)
|
||||
, distance_over_unit_sphere(1)
|
||||
, crosses_prime_meridian(0)
|
||||
, south(true)
|
||||
, south_vertex(false)
|
||||
, max_lon(0)
|
||||
, min_lon(360)
|
||||
{}
|
||||
inline calculation_type area(calculation_type radius) const
|
||||
{
|
||||
calculation_type result;
|
||||
|
||||
// Encircles pole
|
||||
if ((crosses_prime_meridian % 2 == 1 && south) || south_vertex)
|
||||
{
|
||||
|
||||
calculation_type constant;
|
||||
|
||||
//if(south_vertex)
|
||||
//{
|
||||
constant = calculation_type(2) * (max_lon - min_lon)
|
||||
/ geometry::math::pi<calculation_type>();
|
||||
//} else {
|
||||
// constant = 4.0;
|
||||
//}
|
||||
|
||||
if (crosses_prime_meridian % 2 == 0 && crosses_prime_meridian > 1)
|
||||
{
|
||||
constant = calculation_type(4) - constant;
|
||||
}
|
||||
|
||||
std::cout << "(const=" << constant << ")";
|
||||
|
||||
|
||||
result = constant
|
||||
* geometry::math::pi<calculation_type>()
|
||||
- std::abs(sum);
|
||||
|
||||
if (geometry::math::sign<calculation_type>(sum) == -1)
|
||||
{
|
||||
result = - result;
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
result = - sum;
|
||||
}
|
||||
|
||||
result *= radius * radius;
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
public :
|
||||
typedef calculation_type return_type;
|
||||
typedef PointOfSegment segment_point_type;
|
||||
typedef excess_sum state_type;
|
||||
|
||||
inline huiller(calculation_type radius = 1.0)
|
||||
: m_radius(radius)
|
||||
{}
|
||||
|
||||
inline void apply(PointOfSegment const& p1,
|
||||
PointOfSegment const& p2,
|
||||
excess_sum& state) const
|
||||
{
|
||||
if (! geometry::math::equals(get<0>(p1), get<0>(p2)))
|
||||
{
|
||||
calculation_type const half = 0.5;
|
||||
calculation_type const two = 2.0;
|
||||
calculation_type const four = 4.0;
|
||||
calculation_type const pi
|
||||
= geometry::math::pi<calculation_type>();
|
||||
calculation_type const two_pi
|
||||
= geometry::math::two_pi<calculation_type>();
|
||||
calculation_type const half_pi
|
||||
= geometry::math::half_pi<calculation_type>();
|
||||
|
||||
// Distance p1 p2
|
||||
calculation_type a = state.distance_over_unit_sphere.apply(p1, p2);
|
||||
|
||||
// Sides on unit sphere to north pole
|
||||
calculation_type b = half_pi - geometry::get_as_radian<1>(p2);
|
||||
calculation_type c = half_pi - geometry::get_as_radian<1>(p1);
|
||||
|
||||
// Semi parameter
|
||||
calculation_type s = half * (a + b + c);
|
||||
|
||||
// E: spherical excess, using l'Huiller's formula
|
||||
// [tg(e / 4)]2 = tg[s / 2] tg[(s-a) / 2] tg[(s-b) / 2] tg[(s-c) / 2]
|
||||
calculation_type excess = four
|
||||
* atan(geometry::math::sqrt(geometry::math::abs(tan(s / two)
|
||||
* tan((s - a) / two)
|
||||
* tan((s - b) / two)
|
||||
* tan((s - c) / two))));
|
||||
|
||||
excess = geometry::math::abs(excess);
|
||||
|
||||
|
||||
// In right direction: positive, add area. In left direction: negative, subtract area.
|
||||
// Longitude comparisons are not so obvious. If one is negative and other is positive,
|
||||
// we have to take the dateline into account.
|
||||
|
||||
calculation_type lon_diff = geometry::get_as_radian<0>(p2)
|
||||
- geometry::get_as_radian<0>(p1);
|
||||
if (lon_diff <= 0)
|
||||
{
|
||||
lon_diff += two_pi;
|
||||
}
|
||||
|
||||
if (lon_diff > pi)
|
||||
{
|
||||
excess = -excess;
|
||||
}
|
||||
/*
|
||||
// Keep track whenever a segment crosses the prime meridian
|
||||
// First normalize to [0,360)
|
||||
//TODO: compress with trapezoidal strategy
|
||||
|
||||
calculation_type p1_lon = geometry::get_as_radian<0>(p1)
|
||||
- ( floor( geometry::get_as_radian<0>(p1) / two_pi ) * two_pi );
|
||||
calculation_type p2_lon = geometry::get_as_radian<0>(p2)
|
||||
- ( floor( geometry::get_as_radian<0>(p2) / two_pi ) * two_pi );
|
||||
|
||||
calculation_type max_lon = std::max(p1_lon, p2_lon);
|
||||
calculation_type min_lon = std::min(p1_lon, p2_lon);
|
||||
|
||||
if(max_lon > pi && min_lon < pi && max_lon - min_lon > pi)
|
||||
{
|
||||
state.crosses_prime_meridian++;
|
||||
}
|
||||
|
||||
//Test if the segment has a vertex that is the South pole
|
||||
if (geometry::get_as_radian<1>(p1) == - half_pi
|
||||
|| geometry::get_as_radian<1>(p2) == - half_pi)
|
||||
{
|
||||
state.south_vertex = true;
|
||||
}
|
||||
|
||||
// Global max, min
|
||||
state.max_lon = std::max(state.max_lon, max_lon);
|
||||
state.min_lon = std::min(state.min_lon, min_lon);
|
||||
|
||||
|
||||
// Test if the segment has a point on northern hemisphere
|
||||
if(state.south)
|
||||
{
|
||||
if(get<1>(p1) > 0 || get<1>(p2) > 0)
|
||||
{
|
||||
state.south = false;
|
||||
}
|
||||
}
|
||||
*/
|
||||
state.sum += excess;
|
||||
|
||||
//std::cout << "(width=" << max_lon-min_lon << ")";
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
inline return_type result(excess_sum const& state) const
|
||||
{
|
||||
//std::cout << "(pole=" << state.crosses_prime_meridian << ")";
|
||||
//std::cout<<"(W="<<state.max_lon - state.min_lon<<")";
|
||||
//std::cout << "(south=" << state.south << ")";
|
||||
return state.area(m_radius);
|
||||
}
|
||||
|
||||
private :
|
||||
/// Radius of the sphere
|
||||
calculation_type m_radius;
|
||||
};
|
||||
|
||||
|
||||
}} // namespace strategy::area
|
||||
|
||||
|
||||
}} // namespace boost::geometry
|
||||
|
||||
#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_AREA_HUILLER_HPP
|
@ -31,7 +31,7 @@ template
|
||||
bool LongSegment = false,
|
||||
typename CalculationType = void
|
||||
>
|
||||
class area_spherical
|
||||
class spherical
|
||||
{
|
||||
typedef typename boost::mpl::if_c
|
||||
<
|
||||
@ -94,11 +94,11 @@ public :
|
||||
typedef excess_sum state_type;
|
||||
typedef geometry::srs::sphere<CT> sphere_type;
|
||||
|
||||
inline area_spherical(sphere_type sphere = sphere_type())
|
||||
inline spherical(sphere_type sphere = sphere_type())
|
||||
: m_sphere(sphere)
|
||||
{}
|
||||
|
||||
inline area_spherical(CT radius) //backward compatibility
|
||||
inline spherical(CT radius) //backward compatibility
|
||||
: m_sphere()
|
||||
{
|
||||
m_sphere.set_radius<0>(radius);
|
||||
@ -140,14 +140,14 @@ namespace services
|
||||
template <typename Point>
|
||||
struct default_strategy<spherical_equatorial_tag, Point>
|
||||
{
|
||||
typedef strategy::area::area_spherical<Point> type;
|
||||
typedef strategy::area::spherical<Point> type;
|
||||
};
|
||||
|
||||
// Note: spherical polar coordinate system requires "get_as_radian_equatorial"
|
||||
template <typename Point>
|
||||
struct default_strategy<spherical_polar_tag, Point>
|
||||
{
|
||||
typedef strategy::area::area_spherical<Point> type;
|
||||
typedef strategy::area::spherical<Point> type;
|
||||
};
|
||||
|
||||
} // namespace services
|
||||
|
@ -61,7 +61,7 @@ void test_spherical_geo()
|
||||
// calculations splitted for ttmath
|
||||
std::string poly = "POLYGON((0 0,0 90,90 0,0 0))";
|
||||
|
||||
bg::strategy::area::area_spherical
|
||||
bg::strategy::area::spherical
|
||||
<
|
||||
typename bg::point_type<pt>::type
|
||||
> strategy_unary(1.0);
|
||||
@ -74,7 +74,7 @@ void test_spherical_geo()
|
||||
BOOST_CHECK_CLOSE(area, expected, 0.0001);
|
||||
|
||||
// With strategy, radius 2 -> 4 pi r^2
|
||||
bg::strategy::area::area_spherical
|
||||
bg::strategy::area::spherical
|
||||
<
|
||||
typename bg::point_type<pt>::type
|
||||
> strategy(2.0);
|
||||
@ -96,7 +96,7 @@ void test_spherical_geo()
|
||||
// With (spherical) Earth strategy
|
||||
poly = "POLYGON((-178.7858 70.7852, 177.4758 71.2333, 179.7436 71.5733, -178.7858 70.7852))";
|
||||
|
||||
bg::strategy::area::area_spherical
|
||||
bg::strategy::area::spherical
|
||||
<
|
||||
typename bg::point_type<pt>::type
|
||||
> spherical_earth(6373);
|
||||
@ -373,7 +373,7 @@ void test_spherical_geo()
|
||||
}
|
||||
bg::correct(aurha);
|
||||
}*/
|
||||
bg::strategy::area::area_spherical
|
||||
bg::strategy::area::spherical
|
||||
<
|
||||
typename bg::point_type<pt>::type
|
||||
> area_spherical(6372.795);
|
||||
|
Loading…
x
Reference in New Issue
Block a user