[feature/is_simple] implement OGC is_simple test for points, segments, multi-points, linestrings and multi-linestrings

This commit is contained in:
Menelaos Karavelas 2014-04-04 16:16:43 +03:00
parent ca0c8b97df
commit dfc3785d48
2 changed files with 731 additions and 0 deletions

View File

@ -0,0 +1,472 @@
#ifndef BOOST_GEOMETRY_ALGORITHMS_OGC_IS_SIMPLE_HPP
#define BOOST_GEOMETRY_ALGORITHMS_OGC_IS_SIMPLE_HPP
#include <boost/geometry/geometry.hpp>
#include <boost/geometry/policies/compare.hpp>
#include <boost/geometry/algorithms/unique.hpp>
#include <boost/geometry/algorithms/equals.hpp>
#include <boost/geometry/algorithms/intersects.hpp>
#include <boost/geometry/algorithms/disjoint.hpp>
#include <boost/geometry/algorithms/detail/point_is_spike_or_equal.hpp>
#include <boost/geometry/views/closeable_view.hpp>
#include <deque>
#include <algorithm>
#include <boost/geometry/algorithms/detail/overlay/self_turn_points.hpp>
namespace boost { namespace geometry { namespace ogc
{
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template <typename Geometry, typename Tag = typename tag<Geometry>::type>
struct is_simple
: not_implemented<Geometry>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace is_simple
{
template <typename Range, closure_selector Closure>
struct has_spikes;
template <typename Range>
struct has_spikes<Range, closed>
{
static inline bool apply(Range const& range)
{
if ( boost::size(range) < 3 )
{
return false;
}
BOOST_AUTO_TPL(it1, boost::begin(range));
BOOST_AUTO_TPL(it2, ++boost::begin(range));
BOOST_AUTO_TPL(it3, ++(++boost::begin(range)));
for (; it3 != boost::end(range); ++it1, ++it2, ++it3)
{
if ( geometry::detail::point_is_spike_or_equal(*it3, *it1, *it2) )
{
return true;
}
}
return false;
}
};
template <typename Range>
struct has_spikes<Range, open>
{
static inline bool apply(Range const& range)
{
typedef typename closeable_view<Range, open>::type ClosedRange;
ClosedRange crange(const_cast<Range&>(range));
return has_spikes<ClosedRange, closed>::apply(crange);
}
};
template
<
typename Geometry,
bool AllowEmpty = true,
typename Tag = typename tag<Geometry>::type
>
struct is_below_minimal_size
{
static inline bool apply(Geometry const&)
{
return false;
}
};
template <typename Linestring>
struct is_below_minimal_size<Linestring, true, linestring_tag>
{
static inline bool apply(Linestring const& linestring)
{
return boost::size(linestring) == 1;
}
};
template <typename Range>
struct is_simple_range
{
static inline bool apply(Range const& range)
{
if ( is_below_minimal_size<Range>::apply(range) )
{
return false;
}
Range other(range);
geometry::unique(other);
if ( boost::size(other) == 1 )
{
return true;
}
if ( has_spikes<Range, closure<Range>::value>::apply(other) )
{
return false;
}
return !geometry::intersects(other);
}
};
template <typename Polygon>
struct is_simple_polygon
{
static inline bool apply(Polygon const& polygon)
{
typedef typename ring_type<Polygon>::type Ring;
BOOST_AUTO_TPL(it, boost::begin(geometry::interior_rings(polygon)));
for (; it != boost::end(geometry::interior_rings(polygon)); ++it)
{
if ( !is_simple_range<Ring>::apply(*it) )
{
return false;
}
}
return is_simple_range<Ring>::apply(geometry::exterior_ring(polygon));
}
};
template <typename MultiPoint>
struct is_simple_multipoint
{
static inline bool apply(MultiPoint const& multipoint)
{
if ( boost::size(multipoint) <= 1 )
{
return true;
}
MultiPoint mp(multipoint);
typedef typename point_type<MultiPoint>::type Point;
std::sort(boost::begin(mp), boost::end(mp), geometry::less<Point>());
geometry::equal_to<Point> equal;
BOOST_AUTO_TPL(it_next, ++boost::begin(mp));
BOOST_AUTO_TPL(it, boost::begin(mp));
for (; it_next != boost::end(mp); ++it, ++it_next)
{
if ( equal(*it, *it_next) )
{
return false;
}
}
return true;
}
};
template <typename MultiLinestring>
struct is_simple_multilinestring
{
static inline bool apply(MultiLinestring const& multilinestring)
{
typedef typename boost::range_value<MultiLinestring>::type Linestring;
typedef typename point_type<MultiLinestring>::type Point;
BOOST_AUTO_TPL(it, boost::begin(multilinestring));
for (; it != boost::end(multilinestring); ++it)
{
if ( !dispatch::is_simple<Linestring>::apply(*it) )
{
return false;
}
}
typedef geometry::detail::overlay::turn_info
<
Point
> turn_info;
std::deque<turn_info> turns;
typedef typename strategy_intersection
<
typename cs_tag<MultiLinestring>::type,
MultiLinestring,
MultiLinestring,
Point
>::segment_intersection_strategy_type segment_intersection_strategy_type;
typedef geometry::detail::overlay::get_turn_info
<
geometry::detail::disjoint::assign_disjoint_policy
> TurnPolicy;
geometry::detail::self_get_turn_points::no_interrupt_policy
interrupt_policy;
geometry::detail::self_get_turn_points::get_turns
<
TurnPolicy
>::apply(multilinestring,
geometry::detail::no_rescale_policy(),
turns,
interrupt_policy);
std::cout << "turns:";
for (typename std::deque<turn_info>::const_iterator tit = turns.begin();
tit != turns.end(); ++tit)
{
std::cout << " " << geometry::dsv(tit->point);
}
std::cout << std::endl << std::endl;
if ( turns.size() == 0 )
{
return true;
}
std::vector<Point> endpoints;
for (it = boost::begin(multilinestring);
it != boost::end(multilinestring); ++it)
{
BOOST_ASSERT ( boost::size(*it) != 1 );
if ( boost::size(*it) != 0 )
{
endpoints.push_back( *boost::begin(*it) );
endpoints.push_back( *(--boost::end(*it)) );
}
}
std::sort(endpoints.begin(), endpoints.end(), geometry::less<Point>());
std::cout << "endpoints: ";
for (typename std::vector<Point>::iterator pit = endpoints.begin();
pit != endpoints.end(); ++pit)
{
std::cout << " " << geometry::dsv(*pit);
}
std::cout << std::endl << std::endl;
for (typename std::deque<turn_info>::const_iterator tit = turns.begin();
tit != turns.end(); ++tit)
{
Linestring const& ls1 =
*(boost::begin(multilinestring)
+ tit->operations[0].seg_id.multi_index);
Linestring const& ls2 =
*(boost::begin(multilinestring)
+ tit->operations[0].other_id.multi_index);
if ( ( !geometry::equals(*boost::begin(ls1), tit->point)
&& !geometry::equals(*--boost::end(ls1), tit->point) )
||
( !geometry::equals(*boost::begin(ls2), tit->point)
&& !geometry::equals(*--boost::end(ls2), tit->point) )
)
{
return false;
}
}
return true;
}
};
template <typename MultiGeometry, bool CheckIntersections>
struct is_simple_multigeometry
{
static inline bool apply(MultiGeometry const& multigeometry)
{
typedef typename boost::range_value<MultiGeometry>::type Geometry;
BOOST_AUTO_TPL(it, boost::begin(multigeometry));
for (; it != boost::end(multigeometry); ++it)
{
if ( !dispatch::is_simple<Geometry>::apply(*it) )
{
return false;
}
}
if ( CheckIntersections )
{
BOOST_AUTO_TPL(it1, boost::begin(multigeometry));
it = it1;
for (; it != boost::end(multigeometry); ++it)
{
for (; it1 != boost::end(multigeometry); ++it1)
{
if ( geometry::intersects(*it, *it1) )
{
return false;
}
}
}
}
return true;
}
};
}} // namespace detail::is_simple
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
// A point is always simple
template <typename Point>
struct is_simple<Point, point_tag>
{
static inline bool apply(Point const&)
{
return true;
}
};
// A segment is always simple.
// A segment is a curve.
// A curve is simple if it does not pass through the same point twice,
// with the possible exception of its two endpoints
//
// Reference: OGC 06-103r4 (§6.1.6.1)
template <typename Segment>
struct is_simple<Segment, segment_tag>
{
static inline bool apply(Segment const&)
{
return true;
}
};
// A box is always simple
// A box is a Polygon, and it satisfies the conditions for Polygon validity.
//
// Reference (for polygon validity): OGC 06-103r4 (§6.1.11.1)
template <typename Box>
struct is_simple<Box, box_tag>
{
static inline bool apply(Box const&)
{
return true;
}
};
// A linestring is a curve.
// A curve is simple if it does not pass through the same point twice,
// with the possible exception of its two endpoints
//
// Reference: OGC 06-103r4 (§6.1.6.1)
template <typename Linestring>
struct is_simple<Linestring, linestring_tag>
: detail::is_simple::is_simple_range<Linestring>
{};
// A Ring is a Polygon.
// A Polygon is always a simple geometric object provided that it is valid.
//
// Reference (for polygon validity): OGC 06-103r4 (§6.1.11.1)
template <typename Ring>
struct is_simple<Ring, ring_tag>
: detail::is_simple::is_simple_range<Ring>
{};
// A Polygon is always a simple geometric object provided that it is valid.
//
// Reference (for validity of Polygons): OGC 06-103r4 (§6.1.11.1)
template <typename Polygon>
struct is_simple<Polygon, polygon_tag>
: detail::is_simple::is_simple_polygon<Polygon>
{};
// A MultiPoint is simple if no two Points in the MultiPoint are equal
// (have identical coordinate values in X and Y)
//
// Reference: OGC 06-103r4 (§6.1.5)
template <typename MultiPoint>
struct is_simple<MultiPoint, multi_point_tag>
: detail::is_simple::is_simple_multipoint<MultiPoint>
{};
// A MultiLinestring is a MultiCurve
// A MultiCurve is simple if all of its elements are simple and the
// only intersections between any two elements occur at Points that
// are on the boundaries of both elements.
//
// Reference: OGC 06-103r4 (§6.1.8.1; Fig. 9)
template <typename MultiLinestring>
struct is_simple<MultiLinestring, multi_linestring_tag>
: detail::is_simple::is_simple_multilinestring<MultiLinestring>
{};
// Not clear what the definition is.
// Right now we check that each element is simple (in fact valid), and
// that the MultiPolygon is also valid.
//
// Reference (for validity of MultiPolygons): OGC 06-103r4 (§6.1.14)
template <typename MultiPolygon>
struct is_simple<MultiPolygon, multi_polygon_tag>
: detail::is_simple::is_simple_multigeometry<MultiPolygon, false>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
template <typename Geometry>
inline bool is_simple(Geometry const& g)
{
return dispatch::is_simple<Geometry>::apply(g);
}
}}} // namespace boost::geometry::ogc
#endif // BOOST_GEOMETRY_MYSQL_ALGORITHMS_IS_SIMPLE_HPP

View File

@ -0,0 +1,259 @@
#include <iostream>
#ifndef BOOST_TEST_MODULE
#define BOOST_TEST_MODULE test_is_simple
#endif
#include <boost/test/included/unit_test.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/segment.hpp>
#include <boost/geometry/geometries/linestring.hpp>
#include <boost/geometry/geometries/polygon.hpp>
#include <boost/geometry/multi/geometries/multi_point.hpp>
#include <boost/geometry/multi/geometries/multi_linestring.hpp>
#include <boost/geometry/multi/geometries/multi_polygon.hpp>
#include <boost/geometry/algorithms/ogc/is_simple.hpp>
namespace bg = ::boost::geometry;
typedef bg::model::point<double,2,bg::cs::cartesian> point_type;
typedef bg::model::segment<point_type> segment_type;
typedef bg::model::linestring<point_type> linestring_type;
typedef bg::model::multi_linestring<linestring_type> multi_linestring_type;
// ccw open and closed polygons
typedef bg::model::polygon<point_type,false,false> open_polygon_type;
typedef bg::model::polygon<point_type,false,true> closed_polygon_type;
// multi-geometries
typedef bg::model::multi_point<point_type> multi_point_type;
typedef bg::model::multi_polygon<open_polygon_type> multi_polygon_type;
template <typename Geometry>
Geometry from_wkt(std::string const& wkt)
{
Geometry g;
bg::read_wkt(wkt, g);
return g;
}
template<typename Segment>
Segment make_segment(double x1, double y1, double x2, double y2)
{
typename boost::geometry::point_type<Segment>::type p(x1, y1), q(x2, y2);
return Segment(p, q);
}
template <typename Geometry>
void test_simple(Geometry const& g, bool simple_geometry)
{
#ifdef GEOMETRY_TEST_DEBUG
std::cout << "======================================" << std::endl;
#endif
bool simple = bg::ogc::is_simple(g);
BOOST_CHECK(simple == simple_geometry);
#ifdef GEOMETRY_TEST_DEBUG
std::cout << "Geometry: " << bg::wkt(g) << std::endl;
std::cout << std::boolalpha;
std::cout << "is simple: " << simple << std::endl;
std::cout << "expected result: " << simple_geometry << std::endl;
std::cout << "======================================" << std::endl;
std::cout << std::endl << std::endl;
std::cout << std::noboolalpha;
#endif
}
//===========================================================================
//===========================================================================
//===========================================================================
BOOST_AUTO_TEST_CASE( test_is_simple_point )
{
#ifdef GEOMETRY_TEST_DEBUG
std::cout << std::endl << std::endl;
std::cout << "************************************" << std::endl;
std::cout << " IS_SIMPLE: POINT " << std::endl;
std::cout << "************************************" << std::endl;
#endif
typedef point_type G;
test_simple(from_wkt<G>("POINT(0 0)"), true);
}
BOOST_AUTO_TEST_CASE( test_is_simple_segment )
{
#ifdef GEOMETRY_TEST_DEBUG
std::cout << std::endl << std::endl;
std::cout << "************************************" << std::endl;
std::cout << " IS_SIMPLE: SEGMENT " << std::endl;
std::cout << "************************************" << std::endl;
#endif
typedef segment_type G;
test_simple(make_segment<G>(0, 0, 0, 0), true);
test_simple(make_segment<G>(0, 0, 1, 0), true);
}
BOOST_AUTO_TEST_CASE( test_is_simple_linestring )
{
#ifdef GEOMETRY_TEST_DEBUG
std::cout << std::endl << std::endl;
std::cout << "************************************" << std::endl;
std::cout << " IS_SIMPLE: LINESTRING " << std::endl;
std::cout << "************************************" << std::endl;
#endif
typedef linestring_type G;
test_simple(from_wkt<G>("LINESTRING()"), true);
test_simple(from_wkt<G>("LINESTRING(0 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,0 0)"), true);
test_simple(from_wkt<G>("LINESTRING(0 0,1 2)"), true);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,2 10,0.5 -1)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,2 1,1 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,2 1,0.5 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,0.5 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,2 0,0.5 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,2 0,1.5 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,2 0,1.5 0,0.5 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,0.5 0,2 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,1 1,0.5 0,0 0)"), false);
test_simple(from_wkt<G>("LINESTRING(0 0,1 0,1 1,0 0)"), true);
test_simple(from_wkt<G>("LINESTRING(0 0,0 0,1 0,1 0,1 1,0 0)"), true);
}
BOOST_AUTO_TEST_CASE( test_is_simple_multilinestring )
{
typedef multi_linestring_type G;
test_simple(from_wkt<G>("MULTILINESTRING()"), true);
test_simple(from_wkt<G>("MULTILINESTRING(())"), true);
test_simple(from_wkt<G>("MULTILINESTRING((),(),())"), true);
test_simple(from_wkt<G>("MULTILINESTRING((),(0 1,1 0))"), true);
test_simple(from_wkt<G>("MULTILINESTRING((0 0),(0 1,1 0))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,0 0),(0 1,1 0))"), true);
test_simple(from_wkt<G>("MULTILINESTRING((0 0),(1 0))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,0 0),(1 0,1 0))"), true);
test_simple(from_wkt<G>("MULTILINESTRING((0 0),(0 0))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 0,0 0),(5 0))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 0,0 0),\
(5 0,1 0,4 1))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 0,0 0),\
(5 0,1 0,4 0))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 0,0 0),(1 0,2 0))"),
false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 1),(0 1,1 0))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 1),(1 1,1 0))"), true);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,2 0),(1 0,0 1))"), false);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 1),(1 1,1 0),(0 1,1 1))"),
true);
test_simple(from_wkt<G>("MULTILINESTRING((0 0,1 1),(1 1,1 0),\
(1 1,0 1,0.5,0.5))"),
false);
}
#if 0
BOOST_AUTO_TEST_CASE( test_is_simple_rest )
{
typedef multi_linestring_type mls;
typedef open_polygon_type op;
typedef closed_polygon_type cp;
typedef multi_point_type mpt;
typedef multi_polygon_type mpl;
test_simple(from_wkt<mls>("MULTILINESTRING()"), true);
test_simple(from_wkt<mls>("MULTILINESTRING(())"), true);
test_simple(from_wkt<mls>("MULTILINESTRING((),(),())"), true);
test_simple(from_wkt<mls>("MULTILINESTRING((),(0 1,1 0))"), true);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0),(0 1,1 0))"), true);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0),(1 0))"), true);
#ifdef GEOMETRY_TEST_INCLUDE_FAILING_TESTS
// test_simple(from_wkt<mls>("MULTILINESTRING((0 0),(0 0))"), false);
#endif
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,1 0,0 0),(5 0))"), false);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,1 0,0 0),\
(5 0,1 0,4 1))"), false);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,1 0,0 0),\
(5 0,1 0,4 0))"), false);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,1 0,0 0),(1 0,2 0))"),
false);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,1 1),(0 1,1 0))"), false);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,1 1),(1 1,1 0))"), false);
test_simple(from_wkt<mls>("MULTILINESTRING((0 0,2 0),(1 0,0 1))"), false);
test_simple(from_wkt<op>("POLYGON(())"), true);
test_simple(from_wkt<op>("POLYGON((),())"), true);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,1 1),())"), true);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,1 0,1 1),())"), true);
test_simple(from_wkt<op>("POLYGON((0 0,1 0))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,2 0,0.5 0,0.5 1))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,2 0,0.5 0,0.5 0))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,1 1,1 0.5))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,1 1))"), true);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,2 1,2 2,1 3))"), true);
test_simple(from_wkt<op>("POLYGON((0 0,2 0,4 1,1 0))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,3 1,-1 2,3 3,3 4,0 4))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,1 0,3 1,0 2,3 3,3 4,0 4))"), false);
test_simple(from_wkt<op>("POLYGON((0 0,10 0,10 10,0 10),\
(1 1,1 2,2 2,2 1))"), false);
test_simple(from_wkt<cp>("POLYGON(())"), true);
test_simple(from_wkt<cp>("POLYGON((),())"), true);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,1 1,0 0),())"), true);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,1 0,1 1,0 0),())"), true);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,0 0))"), false);
test_simple(from_wkt<cp>("POLYGON((0 0,2 0,0.5 0,0.5 1,0 0))"), false);
test_simple(from_wkt<cp>("POLYGON((0 0,2 0,0.5 0,0.5 0,0 0))"), false);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,1 1,1 0.5,0 0))"), false);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,1 1,0 0))"), true);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,2 1,2 2,1 3,0 0))"), true);
test_simple(from_wkt<cp>("POLYGON((0 0,2 0,4 1,1 0,0 0))"), false);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,3 1,-1 2,3 3,3 4,0 4,0 0))"),
false);
test_simple(from_wkt<cp>("POLYGON((0 0,1 0,3 1,0 2,3 3,3 4,0 4,0 0))"),
false);
test_simple(from_wkt<cp>("POLYGON((0 0,10 0,10 10,0 10,0 0),\
(1 1,1 2,2 2,2 1,1 1))"), false);
test_simple(from_wkt<mpt>("MULTIPOINT()"), true);
test_simple(from_wkt<mpt>("MULTIPOINT(0 0,1 0,1 1,0 1)"), true);
test_simple(from_wkt<mpt>("MULTIPOINT(0 0,1 0,1 1,1 0,0 1)"), false);
test_simple(from_wkt<mpl>("MULTIPOLYGON()"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON( ((),()) )"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON( (()),(()) )"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON( ((),()),(()) )"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON( ((0 0),()),(()) )"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON( ((0 0),()),((1 1)) )"), true);
#ifdef GEOMETRY_TEST_INCLUDE_FAILING_TESTS
// test_simple(from_wkt<mpl>("MULTIPOLYGON( ((0 0),()),((0 0)) )"), false);
#endif
test_simple(from_wkt<mpl>("MULTIPOLYGON(((0 0,1 0,2 1,2 2,1 3)),\
((10 0,11 0,11 1)))"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON(((0 0,1 0,1 0,2 1,2 2,1 3)),\
((10 0,11 0,11 1,11 1)))"), true);
test_simple(from_wkt<mpl>("MULTIPOLYGON(((0 0,1 0,3 1,0 2,3 3,3 4,0 4)),\
((10 0,11 0,11 1)))"), false);
}
#endif