
AutoIndex
John Maddock

Copyright © 2008 , 2011 John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 1
Getting Started and Tutorial ... 3

Step 1: Build the AutoIndex tool ... 3
Step 2: Configure Boost.Build jamfile to use AutoIndex .. 3

Available Indexing Options .. 4
Making AutoIndex optional .. 5

Step 3: Add indexes to your documentation ... 7
Step 4: Create the .idx script file - to control what to terms to index ... 9
Step 5: Add Manual Index Entries to Docbook XML - Optional .. 10
Step 6: Build the Docs ... 11
Step 7: Iterate - to refine your index ... 11

Script File (.idx) Reference .. 12
Understanding The AutoIndex Workflow .. 16
XML Handling .. 17
Command Line Reference .. 17
Index ... 17

Overview
AutoIndex is a tool for taking the grunt work out of indexing a Boostbook/Docbook document (perhaps generated by your Quickbook
file mylibrary.qbk, and perhaps using also Doxygen autodoc) that describes C/C++ code.

Traditionally, in order to index a Docbook document you would have to manually add a large amount of <indexterm> markup: in
fact one <indexterm> for each occurrence of each term to be indexed.

Instead AutoIndex will automatically scan one or more C/C++ header files and extract all the function, class, macro and typedef
names that are defined by those headers, and then insert the <indexterm>s into the Docbook XML document for you.

AutoIndex can also scan using a list of index terms specified in a script file, for example index.idx. These manually provided terms
can optionally be regular expressions, and may allow the user to find references to terms that may not occur in the C++ header files.
Of course providing a manual list of search terms in to index is a tedious task (especially handling plurals and variants), and requires
enough knowledge of the library to guess what users may be seeking to know, but at least the real 'grunt work' of finding the term
and listing the page number is automated.

AutoIndex creates index entries as follows:

for each occurrence of each search term, it creates two index entries:

1. The search term as the primary index key and the title of the section it appears in as a subterm.

2. The section title as the main index entry and the search term as the subentry.

Thus the user has two chances to find what they're looking for, based upon either the section name or the function, class, macro or
typedef name.

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

This behaviour can be changed so that only one index entry is created (using the search term as the key and not using
the section name except as a sub-entry of the search term).

So for example in Boost.Math the class name students_t_distribution has a primary entry that lists all sections the class name
appears in:

Then those sections also have primary entries, which list all the search terms those sections contain:

Of course these automated index entries may not be quite what you're looking for: often you'll get a few spurious entries, a few
missing entries, and a few entries where the section name used as an index entry is less than ideal. So AutoIndex provides some
powerful regular expression based rules that allow you to add, remove, constrain, or rewrite entries. Normally just a few lines in
AutoIndex's script file are enough to tailor the output to match the author's expectations (and thus hopefully the index user's expect-
ations too!).

AutoIndex also supports multiple indexes (as does Docbook), and since it knows which search terms are function, class, macro or
typedef names, it can add the necessary attributes to the XML so that you can have separate indexes for each of these different types.
These specialised indexes only contain entries for the function, class, macro or typedef names, section names are never used as
primary index terms here, unlike the main "include everything" index.

Finally, while the Docbook XSL stylesheets create nice indexes complete with page numbers for PDF output, the HTML indexes
look a lot less good, as these use section titles in place of page numbers... but as AutoIndex uses section titles as index entries this
leads to a lot of repetition, so as an alternative AutoIndex can be instructed to construct the index itself. This is faster than using the
XSL stylesheets, and now each index entry is a hyperlink to the appropriate section:

With internal index generation there is also a helpful navigation bar at the start of each Index:

2

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Finally, you can choose what kind of XML container wraps an internally generated index - this defaults to <section>...</section>
but you can use either command line options or Boost.Build Jamfile features, to select an alternative wrapper - for example appendix
or chapter would be good choices, whatever fits best into the flow of the document. You can even set the container wrapper to type
index provided you turn off index generation by the XSL stylesheets, for example by setting the following build requirements in the
Jamfile:

<format>html:<auto-index-internal>on # Use internally generated indexes.
<auto-index-type>index # Use <index>...</index> as the XML wrapper.
<format>html:<xsl:param>generate.index=0 # Don't let the XSL stylesheets generate indexes.

Getting Started and Tutorial

Step 1: Build the AutoIndex tool
cd into tools/auto_index/build and invoke bjam as:

bjam release

Optionally pass the name of the compiler toolset you want to use to bjam as well:

bjam release gcc

Now open up your user-config.jam file and at the end of the file add the line:

using auto-index : full-path-of-executable-auto-index.exe ;

Note

This declaration must go towards the end of user-config.jam, or in any case after the Boostbook initialisation.

Also note that Windows users must use forward slashes in the paths in user-config.jam

Finally note that tools/auto_index/auto-index.jam gets copied into the same directory as the rest of the Boost.Build tools
(under tools/build/v2/tools in your main Boost tree): this is a temporary fix that will go away if the tool is accepted into Boost.

Caution

If you move to a new machine you will need to do this! An error message will warn about missing auto-index.jam.

Step 2: Configure Boost.Build jamfile to use AutoIndex
Assuming you have a Jamfile for building your documentation that looks something like:

3

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boostbook standalone
 :
 mylibrary
 :
 # build requirements go here:
 ;

Then add the line:

using auto-index ; ↵

to the start of the Jamfile, and then add whatever auto-index options you want to the build requirements section, for example:

boostbook standalone
 :
 mylibrary
 :
 # Build requirements go here:

 # <auto-index>on (or off) one turns on (or off) indexing:
 <auto-index>on

 # Turns on (or off) auto-index-verbose for diagnostic info.
 # This is highly recommended until you have got all the many details correct!
 <auto-index-verbose>on

 # Choose the indexing method (separately for html and PDF) - see manual.
 # Choose indexing method for PDFs:
 <format>pdf:<auto-index-internal>off

 # Choose indexing method for html:
 <format>html:<auto-index-internal>on

 # Set the name of the script file to use (index.idx is popular):
 <auto-index-script>index.idx
 # Commands in the script file should all use RELATIVE PATHS
 # otherwise the script will not be portable to other machines.
 # Relative paths are normally taken as relative to the location
 # of the script file, but we can add a prefix to all
 # those relative paths using the <auto-index-prefix> feature.
 # The path specified by <auto-index-prefix> may be either relative or
 # absolute, for example the following will get us up to the boost root
 # directory for most Boost libraries:
 <auto-index-prefix>../../..

 # Tell Quickbook that it should enable indexing.
 <quickbook-define> ;

 ;

Available Indexing Options

The available options are:

<auto-index>off/on Turns indexing of the document on, defaults to "off", so be sure to set this if you want
AutoIndex invoked!

<auto-index-internal>off/on Chooses whether AutoIndex creates the index itself (feature on), or whether it simply inserts
the necessary DocBook markup so that the DocBook XSL stylesheets can create the index.
Defaults to "off".

4

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

<auto-index-script>filename Specifies the name of the script to load.

<auto-index-no-duplicates>off/on When on AutoIndex will only index a term once in any given section, otherwise (the default)
multiple index entries per term may be created if the term occurs more than once in the section.

<auto-index-section-names>off/on When on AutoIndex will use create two index entries for each term found - one uses the term
itself as the primary index key, the other uses the enclosing section name. When off the index
entry that uses the section title is not created. Defaults to "on"

<auto-index-verbose>off/on Defaults to "off". When turned on AutoIndex prints progress information - useful for debugging
purposes during setup.

<auto-index-prefix>filename Optionally specifies a directory to apply as a prefix to all relative file paths in the script file.

You may wish to do this to reduce typing of pathnames, and/or where the paths can't be located
relative to the script file location, typically if the headers are in the Boost trunk, but the script
file is in Boost sandbox.

For Boost standard library layout, <auto-index-prefix>../../.. will get you back up
to the 'root' of the Boost tree, so !scan-path boost/mylibrary/ is where your headers
will be, and libs/mylibrary for other files. Without a prefix all relative paths are relative
to the location of the script file.

<auto-index-type>element-name Specifies the name of the XML element to enclose internally generated indexes in: defaults
to section, but could equally be appendix or chapter or some other block level element that
has a formal title. The actual list of available options depends upon the document type, the
following table gives the available options:

Available Index TypesDocument Type

appendix index article chapter reference partbook

section appendix index sect1article

See Chapterlibrary

section index sect1chapter

appendix index article chapter referencepart

section index sect1appendix

section index sect1preface

N/A: an index would have to be placed within a subsection of the document.qandadiv

N/A: an index would have to be placed within a subsection of the document.qandaset

N/A: an index would have to be placed within a subsection of the document.reference

N/A: an index would have to be placed within a subsection of the document.set

Making AutoIndex optional

It is considerate to make the use of auto-index optional in Boost.Build, to allow users who do not have AutoIndex installed to still
be able to build your documentation.

5

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This also very convenient while you are refining your documentation, to allow you to decide to build indexes, or not: building indexes
can take long time, if you are just correcting typos, you won't want to wait while you keep rebuilding the index!

One method of setting up optional AutoIndex support is to place all AutoIndex configuration in a the body of a bjam if statement:

if --enable-index in [modules.peek : ARGV]
 {
 ECHO "Building the docs with automatic index generation enabled." ;

 using auto-index ;
 project : requirements
 <auto-index>on
 <auto-index-script>index.idx

 ... other auto-index options here...

 # And tell Quickbook that it should enable indexing.
 <quickbook-define>
 ;
 }
 else
 {
 ECHO "Building the my_library docs with automatic index generation disabled. To get an auto-
index, try building with --enable-index." ;
 }

You will also need to add a conditional statement at the end of your Quickbook file, so that the index(es) is/are only added after the
last section if indexing is enabled.

[? enable_index
'''
 <index/>
'''
]

To use this jamfile, you need to cd to your docs folder, for example:

cd \boost-sandbox\guild\mylibrary\libs\mylibrary\doc

and then run bjam to build the docs without index, for example:

bjam -a html > mylibrary_html.log

or with index(es)

bjam -a html --enable-index > mylibrary_html_index.log

Tip

Always send the output to a log file. It will contain of lot of stuff, but is invaluable to check if all has gone right,
and else diagnose what has gone wrong.

6

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tip

A return code of 0 is not a reliable indication that you have got what you really want - inspecting the log file is the
only certain way.

Tip

If you upgrade compiler version, for example MSVC from 9 to 10, then you may need to rebuild Autoindex to avoid
what Microsoft call a 'side-by-side' error. And make sure that the autoindex.exe version you are using is the new
one.

Step 3: Add indexes to your documentation
To add a single "include everything" index to a BoostBook/Docbook document, (perhaps generated using Quickbook, and perhaps
also using Doxygen reference section), add <index/> at the location where you want the index to appear. The index will be rendered
as a separate section called "Index" when the documentation is built.

To add multiple indexes, then give each one a title and set its type attribute to specify which terms will be included, for example
to place the function, class, macro or typedef names indexed by auto_index in separate indexes along with a main "include everything"
index as well, one could add:

<index type="class_name">
<title>Class Index</title>
</index>

<index type="typedef_name">
<title>Typedef Index</title>
</index>

<index type="function_name">
<title>Function Index</title>
</index>

<index type="macro_name">
<title>Macro Index</title>
</index>

<index/>

Note

Multiple indexes like this only work correctly if you tell the XSL stylesheets to honor the "type" attribute on each
index as by default . You can turn the feature on by adding <xsl:param>index.on.type=1 to your projects re-
quirements in the Jamfile.

In Quickbook, you add the same markup but enclose it between two triple-tick ''' escapes, thus

'''<index/>''' ↵

If you are writing a Quickbook document with Doxygen reference documentation, the position of a [xinclude autodoc.xml]
line in the Quickbook file determines the location of the Doxygen references section. You will almost certainly want this as well.

7

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

[xinclude autodoc.xml] # Using Doxygen reference documentation.

You can control the displayed name of the Doxygen reference section thus by adding to the end of the Doxygen autodoc section in
your jamfile.

<xsl:param>"boost.doxygen.reftitle=Boost.mylibrary C++ Reference"

Note

AutoIndex knows nothing of the XML xinclude element, so if you're writing raw Docbook XML then you may
want to run this through an XSL processor to flatten everything to one XML file before passing to AutoIndex. If
you're using Boostbook or quickbook though, this all happens for you anyway, and AutoIndex will index the whole
document including any sections included with xinclude.

If you are using auto-index's internal index generation on

<auto-index-internal>on

(usually recommended for HTML output, and not the default) then you can also decide what kind of XML wrapper the generated
index is placed in. By default this is a <section>...</section> XML block (this replaces the original <index>...</index>
block). However, depending upon the structure of the document and whether or not you want the index on a separate page - or else
on the front page after the TOC - you may want to place the index inside a different type of XML block. For example if your document
uses <chapter> top level content rather than <section>s then it may be preferable to place the index in a <chapter> or <ap-
pendix> block. You can also place the index inside an <index> block if you prefer, in which case the index does not appear in on
a page of its own, but after the TOC in the HTML output.

You control the type of XML block used by setting the <auto-index-type>element-name attribute in the Jamfile, or via the
index-type=element-name command line option to auto-index itself. For example, to place the index in an appendix, your
Jamfile might look like:

8

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using quickbook ;
using auto-index ;

xml mylibrary : mylibary.qbk ;
boostbook standalone
 :
 mylibrary
 :
 # auto-indexing is on:
 <auto-index>on

 # PDFs rely on the XSL stylesheets to generate the index:
 <format>pdf:<auto-index-internal>off

 # HTML output uses auto-index to generate the index:
 <format>html:<auto-index-internal>on

 # Name of script file to use:
 <auto-index-script>index.idx

 # Set the XML wrapper for HML Indexes to "appendix":
 <format>html:<auto-index-type>appendix

 # Turn on multiple index support:
 <xsl:param>index.on.type=1

Step 4: Create the .idx script file - to control what to terms to index
AutoIndex works by reading a script file that tells it what terms to index.

If your document contains largely text, and only a small amount of simple C++, and/or if you are using Doxygen to provide a C++
Reference section (that lists the C++ elements), and/or if you are relying on the indexing provided from a Standalone Doxygen Index,
you may decide that a index is not needed and that you may only want the text part indexed.

But if you want C++ classes functions, typedefs and/or macros AutoIndexed, optionally, the script file also tells which other C++
files to scan.

At its simplest, it will scan one or more headers for terms that should be indexed in the documentation. So for example to scan
"myheader.hpp" the script file would just contain:

!scan myheader.hpp
!scan mydetailsheader.hpp

Or, more likely in practice, so we can recursively scan through directories looking for all the files to scan whose name matches a
particular regular expression:

!scan-path "boost/mylibrary" ".*.hpp" true ↵

Each argument is whitespace separated and can be optionally enclosed in "double quotes" (recommended).

The final true argument indicates that subdirectories in /boost/math/mylibrary should be searched recursively in addition to
that directory.

Caution

The second file-name-regex argument is a regular expression and not a filename GLOB!

9

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Caution

The scan-path is modified by any setting of <auto-index-prefix>. The examples here assume that this is <auto-
index-prefix>../../.. so that boost/mylibrary will be your header files, libs/mylibrary/doc will
contain your documentation files and libs/mylibrary/example will contain your examples.

You could also scan any examples (.cpp) files, typically in folder /mylibrary/lib/example.

All example source files, assuming no sub-folders.
!scan-path "libs/mylibrary/example" ".*\.cpp"

Often the scan or scan-path rules will bring in too many terms to search for, so we need to be able to exclude terms as well:

!exclude type

Which excludes the term "type" from being indexed.

We can also add terms manually:

foobar

will index occurrences of "foobar" and:

foobar \<\w*(foo|bar)\w*\>

will index any whole word containing either "foo" or "bar" within it, this is useful when you want to index a lot of similar or related
words under one entry, for example:

reflex

Will only index occurrences of "reflex" as a whole word, but:

reflex \<reflex\w*\>

will index occurrences of "reflex", "reflexing" and "reflexed" all under the same entry reflex. You will very often need to use this to
deal with plurals and other variants.

This inclusion rule can also restrict the term to certain sections, and add an index category that the term should belong to (so it only
appears in certain indexes).

Finally the script can add rewrite rules, that rename section names that are automatically used as index entries. For example we might
want to remove leading "A" or "The" prefixes from section titles when AutoIndex uses them as an index entry:

!rewrite-name "(?i)(?:A|The)\s+(.*)" "\1"

Step 5: Add Manual Index Entries to Docbook XML - Optional
If you add manual <indexentry> markup to your Docbook XML then these will be passed through unchanged. Please note however,
that if you are using AutoIndex's internal index generation then it only recognises <primary> and <secondary> elements within
the <indexterm>. <tertiary>, <see> and <seealso> elements are not currently recognised and auto-index will emit a warning
if these are used.

10

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Likewise none of the attributes which can be applied to these elements are used when AutoIndex generates the index itself, with the
exception of the <type> attribute.

Step 6: Build the Docs
Using Boost.Build you build the docs with either:

bjam release > mylibrary_html.log

To build the html docs or:

bjam pdf release > mylibrary_pdf.log

To build the pdf.

During the build process you should see AutoIndex emit a message in the log file such as:

Indexing 990 terms... ↵

If you don't see that, or if it's indexing 0 terms then something is wrong!

Likewise when index generation is complete, AutoIndex will emit another message:

38 Index entries were created.

Again, if you see that 0 entries were created then something is wrong!

Examine the log file, and if the cause is not obvious, make sure that you have <auto-index-verbose>on and that any needed
!debug regular-expression directives are in your script file.

Step 7: Iterate - to refine your index
Creating a good index is an iterative process, often the first step is just to add a header scanning rule to the script file and then gen-
erate the documentation and see:

• What's missing.

• What's been included that shouldn't be.

• What's been included under a poor name.

Further rules can then be added to the script to handle these cases and the next iteration examined, and so on.

Tip

If you don't understand why a particular term is (or is not) present in the index, try adding a !debug regular-expression
directive to the script file.

Restricting which Sections are indexed for a particular term

You can restrict which sections are indexed for a particular term. So assuming that the docbook document has the usual hierarchical
names for section ID's hierarchical names for section IDs(as Quickbook generates, for example), you can easily place a constraint
on which sections are examined for a particular term.

For example, if you want to index occurrences of Lord Kelvin's name, but only in the introduction section, you might then add:

11

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Kelvin "" ".*introduction.*"

to the script file, assuming that the section ID of the intro is "some_library_or_chapter_name.introduction".

This would avoid an index entry every time ° kelvin is found, something the user is unlikely to find helpful.

Script File (.idx) Reference
The following elements can occur in a script:

Comments and blank lines

Blank lines consisting of only whitespace are ignored, so are lines that start with a #. (But, of course, you can't append # comments
onto the end of a line!).

Inclusion of Index terms

term [regular-expression1 [regular-expression2 [category]]]

term Term to index.

The index term will form a primary entry in the Index with the section title(s) containing the term as
secondary entries, and also will be used as a secondary entry beneath each of the section titles that
the index term occurs in.

regular-expression1 Index term Searcher.

An optional regular expression: each occurrence of the regular expression in the text of the document
will result in one index term being emitted.

If the regular expression is omitted (default) or is "", then the index term itself will be used as the
search text - and only occurrence of whole words matching index term will be indexed.

For example:

foobar

will index occurrences of "foobar" in any section, but

foobar \<\w*(foo|bar)\w*\>

will index any whole word containing either "foo" or "bar" within it. This is useful when you want
to index a lot of similar or related words under one entry.

reflex

will only index occurrences of "reflex" as a whole word, but:

reflex \<reflex\w*\>

will index occurrences of "reflex", "reflexes", "reflexing" and "reflexed" ... all under the same entry
reflex.

You will very often need to use this to deal with plurals and other variants.

12

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

regular-expression2 Section(s) Selector.

A constraint that specifies which sections are indexed for term: only if the ID of the section matches
regular-expression2 exactly will that section be indexed for occurrences of term.

For example, to limit indexing to just one specific section (but not sub-sections below):

myclass "" "mylib.examples"

For example, to limit indexing to specific sections, and sub-sections below:

myclass "" "mylib.examples.*"

will index occurrences of "myclass" as a whole word, but only in sections whose section ID begins
"mylib.examples",

myclass "\<myclass\w*\>" "mylib.examples.*"

and will also index plurals myclass, myclasses, myclasss ...

while:

myclass "" "(?!mylib.introduction.*).*"

will index occurrences of "myclass" in any section, except those whose section IDs begin "mylib.in-
troduction".

reflex "\<reflex\w*\>" "mylib.introduction.*"

If this third section selection field is omitted (the default) or is "", then all sections are indexed for
this term.

category Index Category Constraint.

Optionally a category to place occurrences of index term in. If you have multiple indexes then this is
the name assigned to the indexes "type" attribute.

For example:

myclass "" "" class_name

Will index occurances of myclass and place them in the class-index if there is one.

Source File Scanning

!scan source-file-name

Scans the C/C++ source file source-file-name for definitions of functions, classs, macros or typedefs and makes each of these a term
to be indexed. Terms found are assigned to the index category "function_name", "class_name", "macro_name" or "typedef_name"
depending on how they were seen in the source file. These may then be included in a specialised index whose "type" attribute has
the same category name.

13

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

When actually indexing a document, the scanner will not index just any old occurrence of the terms found in the
source files. Instead it searches for class definitions or function or typedef declarations. This reduces the number of
spurious matches placed in the index, but may also miss some legitimate terms: refer to the define-scanner command
for information on how to change this.

Directory and Source File Scanning

!scan-path directory-name file-name-regex [recurse]

directory-name The directory to scan: this should be a path relative to the script file (or to the path specified with the pre-
fix=path option on the command line) and should use all forward slashes in its file name.

file-name-regex A regular expression: any file in the directory whose name matches the regular expression will be scanned
for terms to index.

recurse An optional boolean value - either "true" or "false" - that indicates whether to recurse into subdirectories.
This defaults to "false"

Excluding Terms

!exclude term-list

Excludes all the terms in whitespace separated term-list from being indexed. This should be placed after any !scan or !scan-path
rules which may result in the terms becoming included. In other words this removes terms from the scanners internal list of things
to index.

Rewriting Section Names

!rewrite-id regular-expression new-name

regular-expression A regular expression: all section ID's that match the expression exactly will have index entries new-
name instead of their title(s).

new-name The name that the section will appear under in the index.

!rewrite-name regular-expression format-text

regular-expression A regular expression: all sections whose titles match the regular expression exactly, will have index
entries composed of the regular expression match combined with the regex format string format-text.

format-text The Perl-style format string used to reformat the title.

For example:

!rewrite-name "(?:A|An|The)\s+(.*)" "\1"

Will remove any leading "A", "An" or "The" from all index entries - thus preventing lots of entries under "The" etc!

14

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Defining or Changing the File Scanners

!define-scanner type file-search-expression xml-regex-formatter term-formatter id-filter file↵
name-filter

When a source file is scanned using the !scan or !scan-path rules, then the file is searched using a series of regular expressions
to look for classes, functions, macros or typedefs that should be indexed. A set of default regular expressions are provided for this
(see below), but sometimes you may want to replace the defaults, or add new scanners. The arguments to this rule are:

type The type to which items found using this rule will assigned, index terms created from the source
file and then found in the XML, will have the type attribute set to this value, and may then appear
in a specialized index with the same type attribute

file-search-expression A regular expression that is used to scan the source file for index terms, the result of a match
against this expression will be transformed by the next two arguments.

xml-regex-formatter A regular expression format string that extracts the salient information from whatever matched
the file-search-expression in the source file, and creates a new regular expression that will be
used to search the document being indexed for occurrences of this index term.

term-formatter A regular expression format string that extracts the salient information from whatever matched
the file-search-expression in the source file, and creates the index term that will appear in the
index.

id-filter Optional. A regular expression that restricts the section-id's that are searched in the document
being indexed: only sections whose ID attribute matches this expression exactly will be considered
for indexing terms found by this scanner.

filename-filter Optional. A regular expression that restricts which files are scanned by this scanner: only files
whose file name matches this expression exactly will be scanned for index terms to use. Note
that the filename matched against this may well be an absolute path, and contain either forward
or backward slash path separators.

If, when the first file is scanned, there are no scanners whose type is "class_name", "typedef_name", "macro_name" or "function_name",
then the defaults are installed. These are equivalent to:

!define-scanner class_name "^[[:space:]]*(tem↵
plate[[:space:]]*<[̂;:{]+>[[:space:]]*)?(class|struct)[[:space:]]*(\<\w+\>([[:blank:]]*\([̂)]*\))?[[:space:]]*)*(\<\w*\>)[[:space:]]*(<[̂;:{]+>)?[[:space:]]*(\{|:[̂;\{()]*\{)""(?:class|struct)[̂;{]+\\<\5\\>[̂;{]+\\{"\5
!define-scanner typedef_name "typedef[^;{}#]+?(\w+)\s*;" "typedef[^;]+\\<\1\\>\\s*;" "\1"
!define-scanner "macro_name" "^\s*#\s*define\s+(\w+)" "\\<\1\\>" "\1"
!define-scanner "func↵
tion_name" "\w+\s+(\w+)\s*\([^\)]*\)\s*[;{]" "\\<\\w+\\>\\s+\\<\1\\>\\s*\\([^;{]*\\)\\s*[;{]" "\1"

Note that these defaults are not installed if you have provided your own versions with these type names. In this case if you want the
default scanners to be in effect as well as your own, you should include the above in your script file. It is also perfectly allowable to
have multiple scanners with the same type, but with the other fields differing.

Finally you should note that the default scanners are quite strict in what they will find, for example the class scanner will only create
index entries for classes that have class definitions of the form:

class my_class : public base_classes
{

// etc

In the documentation, so that simple mentions of the class name will not get indexed, only the class synopsis if there is one. If this
isn't how you want things, then include the class_name scanner definition above in your script file, and change the xml-regex-
formatter field to something more permissive, for example:

15

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

!define-scanner class_name "^[[:space:]]*(tem↵
plate[[:space:]]*<[̂;:{]+>[[:space:]]*)?(class|struct)[[:space:]]*(\<\w+\>([[:blank:]]*\([̂)]*\))?[[:space:]]*)*(\<\w*\>)[[:space:]]*(<[̂;:{]+>)?[[:space:]]*(\{|:[̂;\{()]*\{)""\\<\5\\>"\5

Will look for any occurrence of whatever class names the scanner may find in the documentation.

Debugging scanning

If you see a term in the index, and you don't understand why it's there, add a debug directive:

!debug regular-expression

Now, whenever regular-expression matches either the found index term, or the section title it appears in, or the type field of a scanner,
then some diagnostic information will be printed that will look something like:

Debug term found, in block with ID: spirit.qi.reference.parser_concepts.parser
Current section title is: Notation
The main index entry will be : Notation
The indexed term is: parser
The search regex is: [P|p]arser
The section constraint is: .qi.reference.parser_concepts.
The index type for this entry is: qi_index

This can produce a lot of output in your log file, but until you are satisfied with your file selection and scanning process, it is worth
switching it on.

Understanding The AutoIndex Workflow
1. Load the script file (usually index.idx) and process it one line at a time, producing one or more index term per (non-comment)

line.

2. Reading all lines builds a list of terms to index. Some of those may be terms defined (by you) directly in the script file, others
may be terms found by scanning C++ header and source files that were specified by the !scan-path directive.

3. Once the complete list of terms to index is complete, it loads the Docbook XML file. (If this comes from Quickbook/Doxygen/Boost-
book/Docbook then this is the complete documentation after conversion to Docbook format).

4. AutoIndex builds an internal Document Object Model (DOM) of the Docbook XML. This internal representation then gets scanned
for occurrences of the terms to index. This scanning works at the XML paragraph level (or equivalent sibling such as a table or
code block) - so all the XML encoding within a paragraph gets flattened to plain text.
This flattening means the regular expressions used to search for terms to index can find anything that is completely contained
within a paragraph (or code block etc).

5. For each term found then an indexterm Docbook element is inserted into the Document Object Model (DOM) (provided internal
index generation is off),

6. Also the AutoIndex's internal index representation gets updated.

7. Once the whole XML document has been indexed, then, if autoindex has been instructed to generate the index itself, it creates
the necessary XML and inserts this into the Document Object Model (DOM).

8. Finally the whole Document Object Model (DOM) is written out as a new Docbook XML file, and normal processing of this
continues via the XSL stylesheets (with xsltproc) to actually build the final human-readable docs.

16

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XML Handling
AutoIndex is rather simplistic in its handling of XML:

• When indexing a document, all block content at the paragraph level gets collapsed into a single string for matching against the
regular expressions representing each index term. In other words, for the most part, you can assume that you're indexing plain
text when writing regular expressions.

• Named XML entities for &, ", ', < or > are converted to their corresponding characters before indexing a section of text. However,
decimal or hex escape sequences are not currently converted.

• Index terms are assumed to be plain text (whether they originate from the script file or from scanning source files) and the characters
&, ", < and > will be escaped to & " < and > respectively.

Command Line Reference
The following command line options are supported by auto_index:

in=infilename Specifies the name of the XML input file to be indexed.

out=outfilename Specifies the name of the new XML file to create.

scan=source-filename Specifies that source-filename should be scanned for terms to index.

script=script-filename Specifies the name of the script file to process.

--no-duplicates If a term occurs more than once in the same section, then include only one index entry.

--internal-index Specifies that auto_index should generate the actual indexes rather than inserting <indexterm>s
and leaving index generation to the XSL stylesheets.

--no-section-names Prevents auto_index from using section names as index entries.

prefix=pathname Specifies a directory to apply as a prefix to all relative file paths in the script file.

index-type=element-name Specifies the name of the XML element to enclose internally generated indexes in: defaults to
section, but could equally be appendix or chapter or some other block level element that has a
formal title.

Index
A
appendix

Available Indexing Options, 4, 5
Command Line Reference, 17
Overview, 1
Step 3: Add indexes to your documentation, 7

AutoIndex
AutoIndex, 1
Available Indexing Options, 4, 5
Making AutoIndex optional, 5
Overview, 1
Step 1: Build the AutoIndex tool, 3
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 4: Create the .idx script file - to control what to terms to index, 9

17

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Step 5: Add Manual Index Entries to Docbook XML - Optional, 10
Step 6: Build the Docs, 11
Understanding The AutoIndex Workflow, 16
XML Handling, 17

Available Indexing Options
appendix, 4, 5
AutoIndex, 4, 5
chapter, 4, 5
debug, 5
Docbook, 4
index, 4, 5
script, 5
section, 4, 5
stylesheet, 4
verbose, 5
XML, 5
XSL, 4
XSL stylesheet, 4

B
bjam

Making AutoIndex optional, 5
Step 1: Build the AutoIndex tool, 3
Step 6: Build the Docs, 11

Boost.Build
Making AutoIndex optional, 5
Overview, 1
Step 1: Build the AutoIndex tool, 3
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 6: Build the Docs, 11

Boostbook
Overview, 1
Step 1: Build the AutoIndex tool, 3
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Understanding The AutoIndex Workflow, 16

C
C++

Overview, 1
Script File (.idx) Reference, 12
Step 3: Add indexes to your documentation, 7
Step 4: Create the .idx script file - to control what to terms to index, 9
Understanding The AutoIndex Workflow, 16

chapter
Available Indexing Options, 4, 5
Command Line Reference, 17
Overview, 1
Step 3: Add indexes to your documentation, 7

class
Overview, 1
Script File (.idx) Reference, 12, 13
Step 3: Add indexes to your documentation, 7

Command Line Reference
appendix, 17
chapter, 17
index, 17

18

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

script, 17
section, 17
stylesheet, 17
XML, 17
XSL, 17
XSL stylesheet, 17

D
debug

Available Indexing Options, 5
Script File (.idx) Reference, 12
Step 6: Build the Docs, 11
Step 7: Iterate - to refine your index, 11

Docbook
Available Indexing Options, 4
Overview, 1
Step 3: Add indexes to your documentation, 7
Step 5: Add Manual Index Entries to Docbook XML - Optional, 10
Step 7: Iterate - to refine your index, 11
Understanding The AutoIndex Workflow, 16

Doxygen
Overview, 1
Step 3: Add indexes to your documentation, 7
Step 4: Create the .idx script file - to control what to terms to index, 9
Understanding The AutoIndex Workflow, 16

F
function

Overview, 1
Script File (.idx) Reference, 12
Step 3: Add indexes to your documentation, 7

H
html

Making AutoIndex optional, 5
Overview, 1
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 6: Build the Docs, 11

hyperlink
Overview, 1

I
index

Available Indexing Options, 4, 5
Command Line Reference, 17
Making AutoIndex optional, 5
Overview, 1
Script File (.idx) Reference, 12, 13, 14, 15
Step 1: Build the AutoIndex tool, 3
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 4: Create the .idx script file - to control what to terms to index, 9
Step 5: Add Manual Index Entries to Docbook XML - Optional, 10
Step 6: Build the Docs, 11
Step 7: Iterate - to refine your index, 11
Understanding The AutoIndex Workflow, 16

19

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XML Handling, 17

J
jamfile

Making AutoIndex optional, 5
Overview, 1
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7

L
log file

Making AutoIndex optional, 5
Script File (.idx) Reference, 12
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 6: Build the Docs, 11

M
macro

Overview, 1
Script File (.idx) Reference, 12
Step 3: Add indexes to your documentation, 7

Making AutoIndex optional
AutoIndex, 5
bjam, 5
Boost.Build, 5
html, 5
index, 5
jamfile, 5
log file, 5
Quickbook, 5
script, 5
section, 5

MSVC
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3

O
Overview

appendix, 1
AutoIndex, 1
Boost.Build, 1
Boostbook, 1
C++, 1
chapter, 1
class, 1
Docbook, 1
Doxygen, 1
function, 1
html, 1
hyperlink, 1
index, 1
jamfile, 1
macro, 1
page, 1
PDF, 1
plural, 1
Quickbook, 1
script, 1

20

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

section, 1
stylesheet, 1
typedef, 1
XML, 1
XSL, 1
XSL stylesheet, 1

P
page

Overview, 1
Step 3: Add indexes to your documentation, 7

PDF
Overview, 1
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 6: Build the Docs, 11

plural
Overview, 1
Script File (.idx) Reference, 12, 13
Step 4: Create the .idx script file - to control what to terms to index, 9

Q
Quickbook

Making AutoIndex optional, 5
Overview, 1
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 7: Iterate - to refine your index, 11
Understanding The AutoIndex Workflow, 16

S
script

Available Indexing Options, 5
Command Line Reference, 17
Making AutoIndex optional, 5
Overview, 1
Script File (.idx) Reference, 12, 14
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 4: Create the .idx script file - to control what to terms to index, 9
Step 6: Build the Docs, 11
Step 7: Iterate - to refine your index, 11
Understanding The AutoIndex Workflow, 16
XML Handling, 17

Script File (.idx) Reference
C++, 12
class, 12, 13
debug, 12
function, 12
index, 12, 13, 14, 15
log file, 12
macro, 12
plural, 12, 13
script, 12, 14
section, 12, 13, 14, 15
text, 12, 14
typedef, 12

21

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XML, 12, 15
section

Available Indexing Options, 4, 5
Command Line Reference, 17
Making AutoIndex optional, 5
Overview, 1
Script File (.idx) Reference, 12, 13, 14, 15
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 3: Add indexes to your documentation, 7
Step 4: Create the .idx script file - to control what to terms to index, 9
Step 7: Iterate - to refine your index, 11
XML Handling, 17

side-by-side
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3

Step 1: Build the AutoIndex tool
AutoIndex, 3
bjam, 3
Boost.Build, 3
Boostbook, 3
index, 3

Step 2: Configure Boost.Build jamfile to use AutoIndex
AutoIndex, 3
Boost.Build, 3
Boostbook, 3
html, 3
index, 3
jamfile, 3
log file, 3
MSVC, 3
PDF, 3
Quickbook, 3
script, 3
section, 3
side-by-side, 3
verbose, 3

Step 3: Add indexes to your documentation
appendix, 7
AutoIndex, 7
Boostbook, 7
C++, 7
chapter, 7
class, 7
Docbook, 7
Doxygen, 7
function, 7
html, 7
index, 7
jamfile, 7
macro, 7
page, 7
PDF, 7
Quickbook, 7
script, 7
section, 7
stylesheet, 7
typedef, 7
XML, 7
XSL, 7

22

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

XSL stylesheet, 7
Step 4: Create the .idx script file - to control what to terms to index

AutoIndex, 9
C++, 9
Doxygen, 9
index, 9
plural, 9
script, 9
section, 9
text, 9

Step 5: Add Manual Index Entries to Docbook XML - Optional
AutoIndex, 10
Docbook, 10
index, 10
XML, 10

Step 6: Build the Docs
AutoIndex, 11
bjam, 11
Boost.Build, 11
debug, 11
html, 11
index, 11
log file, 11
PDF, 11
script, 11
verbose, 11

Step 7: Iterate - to refine your index
debug, 11
Docbook, 11
index, 11
Quickbook, 11
script, 11
section, 11

stylesheet
Available Indexing Options, 4
Command Line Reference, 17
Overview, 1
Step 3: Add indexes to your documentation, 7
Understanding The AutoIndex Workflow, 16

T
text

Script File (.idx) Reference, 12, 14
Step 4: Create the .idx script file - to control what to terms to index, 9
Understanding The AutoIndex Workflow, 16
XML Handling, 17

typedef
Overview, 1
Script File (.idx) Reference, 12
Step 3: Add indexes to your documentation, 7

U
Understanding The AutoIndex Workflow

AutoIndex, 16
Boostbook, 16
C++, 16
Docbook, 16

23

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Doxygen, 16
index, 16
Quickbook, 16
script, 16
stylesheet, 16
text, 16
XML, 16
XSL, 16
XSL stylesheet, 16

V
verbose

Available Indexing Options, 5
Step 2: Configure Boost.Build jamfile to use AutoIndex, 3
Step 6: Build the Docs, 11

X
XML

Available Indexing Options, 5
Command Line Reference, 17
Overview, 1
Script File (.idx) Reference, 12, 15
Step 3: Add indexes to your documentation, 7
Step 5: Add Manual Index Entries to Docbook XML - Optional, 10
Understanding The AutoIndex Workflow, 16
XML Handling, 17

XML Handling
AutoIndex, 17
index, 17
script, 17
section, 17
text, 17
XML, 17

XSL
Available Indexing Options, 4
Command Line Reference, 17
Overview, 1
Step 3: Add indexes to your documentation, 7
Understanding The AutoIndex Workflow, 16

XSL stylesheet
Available Indexing Options, 4
Command Line Reference, 17
Overview, 1
Step 3: Add indexes to your documentation, 7
Understanding The AutoIndex Workflow, 16

24

AutoIndex

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	AutoIndex
	Table of Contents
	Overview
	Getting Started and Tutorial
	Step 1: Build the AutoIndex tool
	Step 2: Configure Boost.Build jamfile to use AutoIndex
	Available Indexing Options
	Making AutoIndex optional

	Step 3: Add indexes to your documentation
	Step 4: Create the .idx script file - to control what to terms to index
	Step 5: Add Manual Index Entries to Docbook XML - Optional
	Step 6: Build the Docs
	Step 7: Iterate - to refine your index

	Script File (.idx) Reference
	Understanding The AutoIndex Workflow
	XML Handling
	Command Line Reference
	Index

