atomic/test/api_test_helpers.hpp
2017-07-11 23:00:52 +03:00

659 lines
17 KiB
C++

// Copyright (c) 2011 Helge Bahmann
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ATOMIC_API_TEST_HELPERS_HPP
#define BOOST_ATOMIC_API_TEST_HELPERS_HPP
#include <boost/atomic.hpp>
#include <cstddef>
#include <cstring>
#include <limits>
#include <boost/config.hpp>
#include <boost/cstdint.hpp>
#include <boost/core/lightweight_test.hpp>
#include <boost/type_traits/integral_constant.hpp>
#include <boost/type_traits/is_signed.hpp>
#include <boost/type_traits/is_unsigned.hpp>
/* provide helpers that exercise whether the API
functions of "boost::atomic" provide the correct
operational semantic in the case of sequential
execution */
static void
test_flag_api(void)
{
#ifndef BOOST_ATOMIC_NO_ATOMIC_FLAG_INIT
boost::atomic_flag f = BOOST_ATOMIC_FLAG_INIT;
#else
boost::atomic_flag f;
#endif
BOOST_TEST( !f.test_and_set() );
BOOST_TEST( f.test_and_set() );
f.clear();
BOOST_TEST( !f.test_and_set() );
}
template<typename T>
void test_base_operators(T value1, T value2, T value3)
{
/* explicit load/store */
{
boost::atomic<T> a(value1);
BOOST_TEST( a.load() == value1 );
}
{
boost::atomic<T> a(value1);
a.store(value2);
BOOST_TEST( a.load() == value2 );
}
/* overloaded assignment/conversion */
{
boost::atomic<T> a(value1);
BOOST_TEST( value1 == a );
}
{
boost::atomic<T> a;
a = value2;
BOOST_TEST( value2 == a );
}
/* exchange-type operators */
{
boost::atomic<T> a(value1);
T n = a.exchange(value2);
BOOST_TEST( a.load() == value2 && n == value1 );
}
{
boost::atomic<T> a(value1);
T expected = value1;
bool success = a.compare_exchange_strong(expected, value3);
BOOST_TEST( success );
BOOST_TEST( a.load() == value3 && expected == value1 );
}
{
boost::atomic<T> a(value1);
T expected = value2;
bool success = a.compare_exchange_strong(expected, value3);
BOOST_TEST( !success );
BOOST_TEST( a.load() == value1 && expected == value1 );
}
{
boost::atomic<T> a(value1);
T expected;
bool success;
do {
expected = value1;
success = a.compare_exchange_weak(expected, value3);
} while(!success);
BOOST_TEST( success );
BOOST_TEST( a.load() == value3 && expected == value1 );
}
{
boost::atomic<T> a(value1);
T expected;
bool success;
do {
expected = value2;
success = a.compare_exchange_weak(expected, value3);
if (expected != value2)
break;
} while(!success);
BOOST_TEST( !success );
BOOST_TEST( a.load() == value1 && expected == value1 );
}
}
// T requires an int constructor
template <typename T>
void test_constexpr_ctor()
{
#ifndef BOOST_NO_CXX11_CONSTEXPR
const T value(0);
const boost::atomic<T> tester(value);
BOOST_TEST( tester == value );
#endif
}
//! The type traits provides max and min values of type D that can be added/subtracted to T(0) without signed overflow
template< typename T, typename D >
struct distance_limits
{
static D min BOOST_PREVENT_MACRO_SUBSTITUTION () BOOST_NOEXCEPT
{
return (std::numeric_limits< D >::min)();
}
static D max BOOST_PREVENT_MACRO_SUBSTITUTION () BOOST_NOEXCEPT
{
return (std::numeric_limits< D >::max)();
}
};
template< typename T, typename D >
struct distance_limits< T*, D >
{
static D min BOOST_PREVENT_MACRO_SUBSTITUTION () BOOST_NOEXCEPT
{
const std::ptrdiff_t ptrdiff = (std::numeric_limits< std::ptrdiff_t >::min)() / sizeof(T);
const D diff = (std::numeric_limits< D >::min)();
return diff < ptrdiff ? static_cast< D >(ptrdiff) : diff;
}
static D max BOOST_PREVENT_MACRO_SUBSTITUTION () BOOST_NOEXCEPT
{
const std::ptrdiff_t ptrdiff = (std::numeric_limits< std::ptrdiff_t >::max)() / sizeof(T);
const D diff = (std::numeric_limits< D >::max)();
return diff > ptrdiff ? static_cast< D >(ptrdiff) : diff;
}
};
template<typename T, typename D, typename AddType>
void test_additive_operators_with_type(T value, D delta)
{
/* note: the tests explicitly cast the result of any addition
to the type to be tested to force truncation of the result to
the correct range in case of overflow */
/* explicit add/sub */
{
boost::atomic<T> a(value);
T n = a.fetch_add(delta);
BOOST_TEST( a.load() == T((AddType)value + delta) );
BOOST_TEST( n == value );
}
{
boost::atomic<T> a(value);
T n = a.fetch_sub(delta);
BOOST_TEST( a.load() == T((AddType)value - delta) );
BOOST_TEST( n == value );
}
/* overloaded modify/assign*/
{
boost::atomic<T> a(value);
T n = (a += delta);
BOOST_TEST( a.load() == T((AddType)value + delta) );
BOOST_TEST( n == T((AddType)value + delta) );
}
{
boost::atomic<T> a(value);
T n = (a -= delta);
BOOST_TEST( a.load() == T((AddType)value - delta) );
BOOST_TEST( n == T((AddType)value - delta) );
}
/* overloaded increment/decrement */
{
boost::atomic<T> a(value);
T n = a++;
BOOST_TEST( a.load() == T((AddType)value + 1) );
BOOST_TEST( n == value );
}
{
boost::atomic<T> a(value);
T n = ++a;
BOOST_TEST( a.load() == T((AddType)value + 1) );
BOOST_TEST( n == T((AddType)value + 1) );
}
{
boost::atomic<T> a(value);
T n = a--;
BOOST_TEST( a.load() == T((AddType)value - 1) );
BOOST_TEST( n == value );
}
{
boost::atomic<T> a(value);
T n = --a;
BOOST_TEST( a.load() == T((AddType)value - 1) );
BOOST_TEST( n == T((AddType)value - 1) );
}
// Opaque operations
{
boost::atomic<T> a(value);
a.opaque_add(delta);
BOOST_TEST( a.load() == T((AddType)value + delta) );
}
{
boost::atomic<T> a(value);
a.opaque_sub(delta);
BOOST_TEST( a.load() == T((AddType)value - delta) );
}
// Modify and test operations
{
boost::atomic<T> a((T)0);
bool f = a.add_and_test((D)0);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == (T)0 );
f = a.add_and_test((D)1);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(((AddType)0) + ((D)1)) );
}
{
boost::atomic<T> a((T)0);
bool f = a.add_and_test((distance_limits< T, D >::max)());
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(((AddType)0) + (distance_limits< T, D >::max)()) );
}
{
boost::atomic<T> a((T)0);
bool f = a.add_and_test((distance_limits< T, D >::min)());
BOOST_TEST( f == ((distance_limits< T, D >::min)() == 0) );
BOOST_TEST( a.load() == T(((AddType)0) + (distance_limits< T, D >::min)()) );
}
{
boost::atomic<T> a((T)0);
bool f = a.sub_and_test((D)0);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == (T)0 );
f = a.sub_and_test((D)1);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(((AddType)0) - ((D)1)) );
}
{
boost::atomic<T> a((T)0);
bool f = a.sub_and_test((distance_limits< T, D >::max)());
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(((AddType)0) - (distance_limits< T, D >::max)()) );
}
{
boost::atomic<T> a((T)0);
bool f = a.sub_and_test((distance_limits< T, D >::min)());
BOOST_TEST( f == ((distance_limits< T, D >::min)() == 0) );
BOOST_TEST( a.load() == T(((AddType)0) - (distance_limits< T, D >::min)()) );
}
}
template<typename T, typename D>
void test_additive_operators(T value, D delta)
{
test_additive_operators_with_type<T, D, T>(value, delta);
}
template< typename T >
void test_negation()
{
{
boost::atomic<T> a((T)1);
T n = a.fetch_negate();
BOOST_TEST( a.load() == (T)-1 );
BOOST_TEST( n == (T)1 );
n = a.fetch_negate();
BOOST_TEST( a.load() == (T)1 );
BOOST_TEST( n == (T)-1 );
}
{
boost::atomic<T> a((T)1);
a.opaque_negate();
BOOST_TEST( a.load() == (T)-1 );
a.opaque_negate();
BOOST_TEST( a.load() == (T)1 );
}
}
template<typename T>
void test_additive_wrap(T value)
{
{
boost::atomic<T> a(value);
T n = a.fetch_add(1) + (T)1;
BOOST_TEST( a.load() == n );
}
{
boost::atomic<T> a(value);
T n = a.fetch_sub(1) - (T)1;
BOOST_TEST( a.load() == n );
}
}
template<typename T>
void test_bit_operators(T value, T delta)
{
/* explicit and/or/xor */
{
boost::atomic<T> a(value);
T n = a.fetch_and(delta);
BOOST_TEST( a.load() == T(value & delta) );
BOOST_TEST( n == value );
}
{
boost::atomic<T> a(value);
T n = a.fetch_or(delta);
BOOST_TEST( a.load() == T(value | delta) );
BOOST_TEST( n == value );
}
{
boost::atomic<T> a(value);
T n = a.fetch_xor(delta);
BOOST_TEST( a.load() == T(value ^ delta) );
BOOST_TEST( n == value );
}
{
boost::atomic<T> a(value);
T n = a.fetch_complement();
BOOST_TEST( a.load() == T(~value) );
BOOST_TEST( n == value );
}
/* overloaded modify/assign */
{
boost::atomic<T> a(value);
T n = (a &= delta);
BOOST_TEST( a.load() == T(value & delta) );
BOOST_TEST( n == T(value & delta) );
}
{
boost::atomic<T> a(value);
T n = (a |= delta);
BOOST_TEST( a.load() == T(value | delta) );
BOOST_TEST( n == T(value | delta) );
}
{
boost::atomic<T> a(value);
T n = (a ^= delta);
BOOST_TEST( a.load() == T(value ^ delta) );
BOOST_TEST( n == T(value ^ delta) );
}
// Opaque operations
{
boost::atomic<T> a(value);
a.opaque_and(delta);
BOOST_TEST( a.load() == T(value & delta) );
}
{
boost::atomic<T> a(value);
a.opaque_or(delta);
BOOST_TEST( a.load() == T(value | delta) );
}
{
boost::atomic<T> a(value);
a.opaque_xor(delta);
BOOST_TEST( a.load() == T(value ^ delta) );
}
{
boost::atomic<T> a(value);
a.opaque_complement();
BOOST_TEST( a.load() == T(~value) );
}
// Modify and test operations
{
boost::atomic<T> a((T)1);
bool f = a.and_and_test((T)1);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(1) );
f = a.and_and_test((T)0);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(0) );
f = a.and_and_test((T)0);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(0) );
}
{
boost::atomic<T> a((T)0);
bool f = a.or_and_test((T)0);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(0) );
f = a.or_and_test((T)1);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(1) );
f = a.or_and_test((T)1);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(1) );
}
{
boost::atomic<T> a((T)0);
bool f = a.xor_and_test((T)0);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(0) );
f = a.xor_and_test((T)1);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(1) );
f = a.xor_and_test((T)1);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(0) );
}
// Bit test and modify operations
{
boost::atomic<T> a((T)42);
bool f = a.bit_test_and_set(0);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(43) );
f = a.bit_test_and_set(1);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(43) );
f = a.bit_test_and_set(2);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(47) );
}
{
boost::atomic<T> a((T)42);
bool f = a.bit_test_and_reset(0);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(42) );
f = a.bit_test_and_reset(1);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(40) );
f = a.bit_test_and_set(2);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(44) );
}
{
boost::atomic<T> a((T)42);
bool f = a.bit_test_and_complement(0);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(43) );
f = a.bit_test_and_complement(1);
BOOST_TEST( f == true );
BOOST_TEST( a.load() == T(41) );
f = a.bit_test_and_complement(2);
BOOST_TEST( f == false );
BOOST_TEST( a.load() == T(45) );
}
}
template<typename T>
void do_test_integral_api(boost::false_type)
{
BOOST_TEST( sizeof(boost::atomic<T>) >= sizeof(T));
test_base_operators<T>(42, 43, 44);
test_additive_operators<T, T>(42, 17);
test_bit_operators<T>((T)0x5f5f5f5f5f5f5f5fULL, (T)0xf5f5f5f5f5f5f5f5ULL);
/* test for unsigned overflow/underflow */
test_additive_operators<T, T>((T)-1, 1);
test_additive_operators<T, T>(0, 1);
/* test for signed overflow/underflow */
test_additive_operators<T, T>(((T)-1) >> (sizeof(T) * 8 - 1), 1);
test_additive_operators<T, T>(1 + (((T)-1) >> (sizeof(T) * 8 - 1)), 1);
}
template<typename T>
void do_test_integral_api(boost::true_type)
{
do_test_integral_api<T>(boost::false_type());
test_additive_wrap<T>(0u);
BOOST_CONSTEXPR_OR_CONST T all_ones = ~(T)0u;
test_additive_wrap<T>(all_ones);
BOOST_CONSTEXPR_OR_CONST T max_signed_twos_compl = all_ones >> 1;
test_additive_wrap<T>(all_ones ^ max_signed_twos_compl);
test_additive_wrap<T>(max_signed_twos_compl);
}
template<typename T>
inline void test_integral_api(void)
{
do_test_integral_api<T>(boost::is_unsigned<T>());
if (boost::is_signed<T>::value)
test_negation<T>();
}
template<typename T>
void test_pointer_api(void)
{
BOOST_TEST( sizeof(boost::atomic<T *>) >= sizeof(T *));
BOOST_TEST( sizeof(boost::atomic<void *>) >= sizeof(T *));
T values[3];
test_base_operators<T*>(&values[0], &values[1], &values[2]);
test_additive_operators<T*>(&values[1], 1);
test_base_operators<void*>(&values[0], &values[1], &values[2]);
#if defined(BOOST_HAS_INTPTR_T)
boost::atomic<void *> ptr;
boost::atomic<boost::intptr_t> integral;
BOOST_TEST( ptr.is_lock_free() == integral.is_lock_free() );
#endif
}
enum test_enum {
foo, bar, baz
};
static void
test_enum_api(void)
{
test_base_operators(foo, bar, baz);
}
template<typename T>
struct test_struct {
typedef T value_type;
value_type i;
inline bool operator==(const test_struct & c) const {return i == c.i;}
inline bool operator!=(const test_struct & c) const {return i != c.i;}
};
template<typename T>
void
test_struct_api(void)
{
T a = {1}, b = {2}, c = {3};
test_base_operators(a, b, c);
{
boost::atomic<T> sa;
boost::atomic<typename T::value_type> si;
BOOST_TEST( sa.is_lock_free() == si.is_lock_free() );
}
}
template<typename T>
struct test_struct_x2 {
typedef T value_type;
value_type i, j;
inline bool operator==(const test_struct_x2 & c) const {return i == c.i && j == c.j;}
inline bool operator!=(const test_struct_x2 & c) const {return i != c.i && j != c.j;}
};
template<typename T>
void
test_struct_x2_api(void)
{
T a = {1, 1}, b = {2, 2}, c = {3, 3};
test_base_operators(a, b, c);
}
struct large_struct {
long data[64];
inline bool operator==(const large_struct & c) const
{
return std::memcmp(data, &c.data, sizeof(data)) == 0;
}
inline bool operator!=(const large_struct & c) const
{
return std::memcmp(data, &c.data, sizeof(data)) != 0;
}
};
static void
test_large_struct_api(void)
{
large_struct a = {{1}}, b = {{2}}, c = {{3}};
test_base_operators(a, b, c);
}
struct test_struct_with_ctor {
typedef unsigned int value_type;
value_type i;
test_struct_with_ctor() : i(0x01234567) {}
inline bool operator==(const test_struct_with_ctor & c) const {return i == c.i;}
inline bool operator!=(const test_struct_with_ctor & c) const {return i != c.i;}
};
static void
test_struct_with_ctor_api(void)
{
{
test_struct_with_ctor s;
boost::atomic<test_struct_with_ctor> sa;
// Check that the default constructor was called
BOOST_TEST( sa.load() == s );
}
test_struct_with_ctor a, b, c;
a.i = 1;
b.i = 2;
c.i = 3;
test_base_operators(a, b, c);
}
#endif